Abstract
Bronchoalveolar lavage performed in 10 patients with extrinsic asthma and 14 controls yielded similar recoveries of fluid and cells. Mast cells and eosinophils, however, formed a greater proportion of the cells recovered from the asthmatic subjects (p less than 0.001 for mast cells; p less than 0.01 for eosinophils), the histamine content of the lavage cells being correspondingly increased (p less than 0.01). Both the percentage of mast cells and the histamine content of lavage cells were significantly inversely correlated with the forced expiratory volume in one second (FEV1; expressed as percentage of predicted) and with the ratio of FEV1 to forced vital capacity before lavage. There was also a significant inverse correlation between the concentration of histamine required to produce a 20% fall in FEV1 and the percentage of mast cells recovered (p less than 0.05). When incubated with antihuman IgE bronchoalveolar mast cells from asthmatic subjects released a significantly increased proportion of total cellular histamine than cells from control subjects at all effective doses of anti-IgE. By contrast, dose response curves for IgE dependent histamine release from peripheral blood leucocytes were similar in asthmatics and controls. Specific antigen led to release of histamine from bronchoalveolar cells and peripheral blood leucocytes of asthmatic subjects but not controls. Lying superficially within the airways, bronchoalveolar mast cells would be readily exposed to inhaled antigen and would release mediators directly on to the airway surface. Their immunological response suggests that they are likely to be important in the pathogenesis of airflow obstruction in asthma.
Full text
PDF![923](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/734e/1417238/bd46228c96f6/bmjcred00468-0009.png)
![924](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/734e/1417238/2e0d465f4780/bmjcred00468-0010.png)
![925](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/734e/1417238/1d4e42ab9add/bmjcred00468-0011.png)
![926](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/734e/1417238/9128d4a8745f/bmjcred00468-0012.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Enerbäck L. Mast cells in rat gastrointestinal mucosa. I. Effects of fixation. Acta Pathol Microbiol Scand. 1966;66(3):289–302. doi: 10.1111/apm.1966.66.3.289. [DOI] [PubMed] [Google Scholar]
- Flint K. C., Leung K. B., Pearce F. L., Hudspith B. N., Brostoff J., Johnson N. M. Human mast cells recovered by bronchoalveolar lavage: their morphology, histamine release and the effects of sodium cromoglycate. Clin Sci (Lond) 1985 Apr;68(4):427–432. doi: 10.1042/cs0680427. [DOI] [PubMed] [Google Scholar]
- Godard P., Chaintreuil J., Damon M., Coupe M., Flandre O., Crastes de Paulet A., Michel F. B. Functional assessment of alveolar macrophages: comparison of cells from asthmatics and normal subjects. J Allergy Clin Immunol. 1982 Aug;70(2):88–93. doi: 10.1016/0091-6749(82)90234-2. [DOI] [PubMed] [Google Scholar]
- Joseph M., Tonnel A. B., Torpier G., Capron A., Arnoux B., Benveniste J. Involvement of immunoglobulin E in the secretory processes of alveolar macrophages from asthmatic patients. J Clin Invest. 1983 Feb;71(2):221–230. doi: 10.1172/JCI110762. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lawrence E. C., Blaese R. M., Martin R. R., Stevens P. M. Immunoglobulin secreting cells in normal human bronchial lavage fluids. J Clin Invest. 1978 Oct;62(4):832–835. doi: 10.1172/JCI109195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacGlashan D. W., Jr, Schleimer R. P., Peters S. P., Schulman E. S., Adams G. K., Sobotka A. K., Newball H. H., Lichtenstein L. M. Comparative studies of human basophils and mast cells. Fed Proc. 1983 May 15;42(8):2504–2509. [PubMed] [Google Scholar]
- Mordelet-Dambrine M., Arnoux A., Stanislas-Leguern G., Sandron D., Chrétien J., Huchon G. Processing of lung lavage fluid causes variability in bronchoalveolar cell count. Am Rev Respir Dis. 1984 Aug;130(2):305–306. doi: 10.1164/arrd.1984.130.2.305. [DOI] [PubMed] [Google Scholar]
- Patel K. R. Sodium cromoglycate in histamine and methacholine reactivity in asthma. Clin Allergy. 1984 Mar;14(2):143–145. doi: 10.1111/j.1365-2222.1984.tb02645.x. [DOI] [PubMed] [Google Scholar]
- Pearce F. L., Ali H., Barrett K. E., Befus A. D., Bienenstock J., Brostoff J., Ennis M., Flint K. C., Hudspith B., Johnson N. M. Functional characteristics of mucosal and connective tissue mast cells of man, the rat and other animals. Int Arch Allergy Appl Immunol. 1985;77(1-2):274–276. doi: 10.1159/000233808. [DOI] [PubMed] [Google Scholar]
- Rankin J. A., Snyder P. E., Schachter E. N., Matthay R. A. Bronchoalveolar lavage. Its safety in subjects with mild asthma. Chest. 1984 Jun;85(6):723–728. doi: 10.1378/chest.85.6.723. [DOI] [PubMed] [Google Scholar]
- Rudzik O., Bienenstock J. Isolation and characteristics of gut mucosal lymphocytes. Lab Invest. 1974 Mar;30(3):260–266. [PubMed] [Google Scholar]
- Tomioka M., Ida S., Shindoh Y., Ishihara T., Takishima T. Mast cells in bronchoalveolar lumen of patients with bronchial asthma. Am Rev Respir Dis. 1984 Jun;129(6):1000–1005. doi: 10.1164/arrd.1984.129.6.1000. [DOI] [PubMed] [Google Scholar]
- Young K. D., Church M. K. Passive anaphylaxis in human lung fragments as a model for testing anti-allergic drugs: its variability and constraints. Int Arch Allergy Appl Immunol. 1983;70(2):138–142. doi: 10.1159/000233311. [DOI] [PubMed] [Google Scholar]