Skip to main content
Gut logoLink to Gut
. 1983 Oct;24(10):929–934. doi: 10.1136/gut.24.10.929

Changes in the biophysical properties and ultrastructure of lungs, and intrapulmonary fibrin deposition in experimental acute pancreatitis.

A R Berry, G C Davies, A M Millar, T V Taylor
PMCID: PMC1420142  PMID: 6618271

Abstract

Using an experimental model of acute pancreatitis in the rat, we have studied changes in the biophysical properties of lungs and intrapulmonary fibrin deposition in this condition. Acute pancreatitis is associated with a significant decrease in pulmonary compliance (p less than 0.01) and a significant increase in lung weight (p less than 0.01) compared with a control sham operation group. These changes are associated with a 24% increase in intrapulmonary 125I fibrinogen deposition (p less than 0.01), and an 18% increase in 125I fibrinogen deposition per gram of lung tissue (p less than 0.05) in acute pancreatitis, compared with a control sham operation group. The increased fibrinogen deposition is abolished by treatment with low dose heparin. Using the same animal model changes in pulmonary ultrastructure are shown using scanning electron microscopy. The results indicate that pulmonary abnormalities are associated with intrapulmonary fibrin deposition in experimental acute pancreatitis and these findings may be relevant to the well described respiratory complications of the condition in man.

Full text

PDF
929

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bayley T., Clements J. A., Osbahr A. J. Pulmonary and circulatory effects of fibrinopeptides. Circ Res. 1967 Oct;21(4):469–485. doi: 10.1161/01.res.21.4.469. [DOI] [PubMed] [Google Scholar]
  2. Belew M., Gerdin B., Porath J., Saldeen T. Isolation of vasoactive peptides from human fibrin and fibrinogen degraded by plasmin. Thromb Res. 1978 Dec;13(6):983–994. doi: 10.1016/0049-3848(78)90227-x. [DOI] [PubMed] [Google Scholar]
  3. Berry A. R., Taylor T. V., Davies G. C. Pulmonary function and fibrinogen metabolism in acute pancreatitis. Br J Surg. 1981 Dec;68(12):870–873. doi: 10.1002/bjs.1800681212. [DOI] [PubMed] [Google Scholar]
  4. Berry A. R., Taylor T. V. Effect of drugs on the pulmonary changes in experimental acute pancreatitis in the rat. Gut. 1982 Jun;23(6):481–484. doi: 10.1136/gut.23.6.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blaisdell F. W., Stallone R. J. The mechanism of pulmonary damage following traumatic shock. Surg Gynecol Obstet. 1970 Jan;130(1):15–22. [PubMed] [Google Scholar]
  6. Chetty U., Gilmour H. M., Taylor T. V. Experimental acute pancreatitis in the rat--a new model. Gut. 1980 Feb;21(2):115–117. doi: 10.1136/gut.21.2.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. De Takats G., Mackenzie W. D. Acute Pancreatic Necrosis and Its Sequelae: A Critical Study of Thirty Cases. Ann Surg. 1932 Sep;96(3):418–440. doi: 10.1097/00000658-193209000-00013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Flenley D. C. Clinical hypoxia: Causes, consequences, and correction. Lancet. 1978 Mar 11;1(8063):542–546. doi: 10.1016/s0140-6736(78)90564-0. [DOI] [PubMed] [Google Scholar]
  9. HARRIS J. M., WEST G. B. Rats resistant to the dextran anaphylactoid reaction. Br J Pharmacol Chemother. 1963 Jun;20:550–562. doi: 10.1111/j.1476-5381.1963.tb01492.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Imrie C. W., Ferguson J. C., Murphy D., Blumgart L. H. Arterial hypoxia in acute pancreatitis. Br J Surg. 1977 Mar;64(3):185–188. doi: 10.1002/bjs.1800640310. [DOI] [PubMed] [Google Scholar]
  11. Interiano B., Stuard I. D., Hyde R. W. Acute respiratory distress syndrome in pancreatitis. Ann Intern Med. 1972 Dec;77(6):923–926. doi: 10.7326/0003-4819-77-6-923. [DOI] [PubMed] [Google Scholar]
  12. Kellum J. M., Jr, DeMeester T. R., Elkins R. C., Zuidema G. D. Respiratory insufficiency secondary to acute pancreatitis. Ann Surg. 1972 May;175(5):657–662. doi: 10.1097/00000658-197205000-00005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kwaan H. C., Anderson M. C., Gramatica L. A study of pancreatic enzymes as a factor in the pathogenesis of disseminated intravascular coagulation during acute pancreatitis. Surgery. 1971 May;69(5):663–672. [PubMed] [Google Scholar]
  14. Maciver A. G., Metcalfe I. L., Possmayer F., Harding P. G., Passi R. B. Alteration of surfactant chemistry in experimental hemorrhagic pancreatitis. J Surg Res. 1977 Nov;23(5):311–314. doi: 10.1016/0022-4804(77)90067-1. [DOI] [PubMed] [Google Scholar]
  15. Morgan A. P., Jenny M. E., Haessler H. Phospholipids, acute pancreatitis, and the lungs: effect of lecithinase infusion on pulmonary surface activity in dogs. Ann Surg. 1968 Mar;167(3):329–335. doi: 10.1097/00000658-196803000-00005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Murphy D., Pack A. I., Imrie C. W. The mechanism of arterial hypoxia occurring in acute pancreatitis. Q J Med. 1980 Spring;49(194):151–163. [PubMed] [Google Scholar]
  17. ROSEMAN D. M., KOWLESSAR O. D., SLEISENGER M. H. Pulmonary manifestations of pancreatitis. N Engl J Med. 1960 Aug 11;263:294–296. doi: 10.1056/NEJM196008112630607. [DOI] [PubMed] [Google Scholar]
  18. Ranson J. H., Turner J. W., Roses D. F., Rifkind K. M., Spencer F. C. Respiratory complications in acute pancreatitis. Ann Surg. 1974 May;179(5):557–566. doi: 10.1097/00000658-197405000-00006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. SHINOWARA G. Y., STUTMAN L. J., WALTERS M. I., RUTH M. E., WALKER E. J. Hypercoagulability in acute pancreatitis. Am J Surg. 1963 Jun;105:714–719. doi: 10.1016/0002-9610(63)90483-5. [DOI] [PubMed] [Google Scholar]
  20. Saldeen T. Quantiative determination of intravascular coagulation in the lungs of experimental animals. Scand J Haematol. 1969;6(3):205–215. doi: 10.1111/j.1600-0609.1969.tb01827.x. [DOI] [PubMed] [Google Scholar]
  21. Saldeen T. Trends in microvascular research. The microembolism syndrome. Microvasc Res. 1976 Mar;11(2):227–259. doi: 10.1016/0026-2862(76)90054-6. [DOI] [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES