Abstract
The intestinal absorption and mucosal hydrolysis of a partial and a complete alpha-amylase hydrolysate of corn starch, simulating the normal intermediary and end products of luminal starch digestion, was studied using an in vivo steady state jejunal perfusion technique in normal human subjects. Alpha-amylase was excluded from the test segment by proximal balloon occlusion. Products of hydrolysis during intestinal perfusion were identified using gel permeation chromatography. Three isocaloric, isotonic sugar saline solutions containing 140 mM glucose, 70 mM maltose and the partial amylase hydrolysate of starch (51.5 +/- 1.4% of glucose content comprising glucose polymers of more than 10 glucose units) were perfused in the first study. Net glucose absorption during perfusion of the partial hydrolysate and free glucose was similar, but significantly faster from maltose (p less than 0.05). Hydrolysis of the polymer fraction containing more than 10 glucose units was significantly slower (29.5 +/- 2.0% of infused load) than the lower molecular weight fraction (56.4 +/- 3.8%, p less than 0.001). As net glucose absorption from the partial hydrolysate was similar to that from glucose, despite the slow hydrolysis of the higher molecular weight fraction, it seemed likely that oligosaccharides in the more rapidly hydrolysed lower molecular weight fractions were exerting a kinetic advantage on glucose absorption. This was confirmed in a second study, where glucose absorption from a complete amylase hydrolysate consisting predominantly of maltose, maltotriose and alpha-limit dextrins, occurred significantly faster (81.8 +/- 4.8 mmol/h/25 cm) than from isocaloric free glucose (55.8 +/- 4.9 mmol/h/25 cm, p less than 0.001). Chromatograms of intestinal aspirates suggested that (1->4), but not 1->6) linked oligosaccharides liberated during luminal and brush-border hydrolysis of dietary starch conferred a kinetic advantage on glucose absorption.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Auricchio S., Della Pietra D., Vegnente A. Studies on intestinal digestion of starch in man. II. Intestinal hydrolysis of amylopectin in infants and children. Pediatrics. 1967 Jun;39(6):853–862. [PubMed] [Google Scholar]
- Ceska M., Birath K., Brown B. A new and rapid method for the clinical determination of alpha-amylase activities in human serum and urine. Optimal conditions. Clin Chim Acta. 1969 Dec;26(3):437–444. doi: 10.1016/0009-8981(69)90071-0. [DOI] [PubMed] [Google Scholar]
- Cook G. C. Comparison of absorption rates of glucose and maltose in man in vivo. Clin Sci. 1973 Apr;44(4):425–428. doi: 10.1042/cs0440425. [DOI] [PubMed] [Google Scholar]
- DAHLQVIST A., THOMSON D. L. SEPARATION AND CHARACTERIZATION OF TWO RAT-INTESTINAL AMYLASES. Biochem J. 1963 Nov;89:272–277. doi: 10.1042/bj0890272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fairclough P. D., Clark M. L., Dawson A. M., Silk D. B., Milla P. J., Harries J. T. Absorption of glucose and maltose in congenital glucose-galactose malabsorption. Pediatr Res. 1978 Dec;12(12):1112–1114. doi: 10.1203/00006450-197812000-00002. [DOI] [PubMed] [Google Scholar]
- Fairclough P. D., Silk D. B., Webb J. P., Clark M. L., Dawson A. M. A reappraisal of 'osmotic' evidence for intact peptide absorption. Clin Sci Mol Med. 1977 Sep;53(3):241–248. doi: 10.1042/cs0530241. [DOI] [PubMed] [Google Scholar]
- Gray G. M. Carbohydrate digestion and absorption. Gastroenterology. 1970 Jan;58(1):96–107. [PubMed] [Google Scholar]
- Gray G. M., Ingelfinger F. J. Intestinal absorption of sucrose in man: interrelation of hydrolysis and monosaccharide product absorption. J Clin Invest. 1966 Mar;45(3):388–398. doi: 10.1172/JCI105354. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gray G. M., Santiago N. A. Disaccharide absorption in normal and diseased human intestine. Gastroenterology. 1966 Oct;51(4):489–498. [PubMed] [Google Scholar]
- HUNT J. N. The site of receptors slowing gastric emptying in response to starch in test meals. J Physiol. 1960 Dec;154:270–276. doi: 10.1113/jphysiol.1960.sp006578. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanke D. W., Warden D. A., Evans J. O., Fannin F. F., Diedrich D. F. Kinetic advantage for transport into hamster intestine of glucose generated from phlorizin by brush border beta-glucosidase. Biochim Biophys Acta. 1980 Jul;599(2):652–663. doi: 10.1016/0005-2736(80)90207-2. [DOI] [PubMed] [Google Scholar]
- Hegarty J. E., Fairclough P. D., Moriarty K. J., Kelly M. J., Clark M. L. Effects of concentration on in vivo absorption of a peptide containing protein hydrolysate. Gut. 1982 Apr;23(4):304–309. doi: 10.1136/gut.23.4.304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelly J. J., Alpers D. H. Properties of human intestinal glucoamylase. Biochim Biophys Acta. 1973 Jul 5;315(1):113–122. doi: 10.1016/0005-2744(73)90135-6. [DOI] [PubMed] [Google Scholar]
- Malathi P., Ramaswamy K., Caspary W. F., Crane R. K. Studies on the transport of glucose from disaccharides by hamster small intestine in vitro. I. Evidence for a disaccharidase-related transport system. Biochim Biophys Acta. 1973 May 25;307(3):613–626. doi: 10.1016/0005-2736(73)90306-4. [DOI] [PubMed] [Google Scholar]
- McMichael H. B., Webb J., Dawson A. M. The absorption of maltose and lactose in man. Clin Sci. 1967 Aug;33(1):135–145. [PubMed] [Google Scholar]
- Modigliani R., Rambaud J. C., Bernier J. J. Validation of the use of a tube with a proximal occlusive balloon for measurement of intestinal absorption in man. Am J Dig Dis. 1978 Aug;23(8):720–722. doi: 10.1007/BF01072359. [DOI] [PubMed] [Google Scholar]
- Olsen W. A., Ingelfinger F. J. The role of sodium in intestinal glucose absorption in man. J Clin Invest. 1968 May;47(5):1133–1142. doi: 10.1172/JCI105802. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silk D. B., Dawson A. M. Intestinal absorption of carbohydrate and protein in man. Int Rev Physiol. 1979;19:151–204. [PubMed] [Google Scholar]
- Sladen G. E., Dawson A. M. An evaluation of perfusion techniques in the study of water and electrolyte absorption in man: the problem of endogenous secretions. Gut. 1968 Oct;9(5):530–535. doi: 10.1136/gut.9.5.530. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sladen G. E., Dawson A. M. Further studies on the perfusion method for measuring intestinal absorption in man: the effects of a proximal occlusive balloon and a mixing segment. Gut. 1970 Nov;11(11):947–954. doi: 10.1136/gut.11.11.947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wahlqvist M. L., Wilmshurst E. G., Richardson E. N. The effect of chain length on glucose absorption and the related metabolic response. Am J Clin Nutr. 1978 Nov;31(11):1998–2001. doi: 10.1093/ajcn/31.11.1998. [DOI] [PubMed] [Google Scholar]
- Warden D. A., Fannin F. F., Evans J. O., Hanke D. W., Diedrich D. F. A hydrolase-related transport system is not required to explain the intestinal uptke of glucose liberated from phlorizin. Biochim Biophys Acta. 1980 Jul;599(2):664–672. doi: 10.1016/0005-2736(80)90208-4. [DOI] [PubMed] [Google Scholar]
- Wilson F. A., Dietschy J. M. The intestinal unstirred layer: its surface area and effect on active transport kinetics. Biochim Biophys Acta. 1974 Aug 21;363(1):112–126. doi: 10.1016/0005-2736(74)90010-8. [DOI] [PubMed] [Google Scholar]
- Wingate D. L., Sandberg R. J., Phillips S. F. A comparison of stable and 14 C-labelled polyethylene glycol as volume indicators in the human jejunum. Gut. 1972 Oct;13(10):812–815. doi: 10.1136/gut.13.10.812. [DOI] [PMC free article] [PubMed] [Google Scholar]