Skip to main content
Immunology logoLink to Immunology
. 1992 Oct;77(2):289–297.

Antigen-presenting characteristics of peritoneal cells of Salmonella enteritidis 11RX-infected mice.

M Pope 1, I Kotlarski 1
PMCID: PMC1421622  PMID: 1427981

Abstract

Investigation of the possibility that infection with intracellular bacterial parasites such as Salmonellae may modulate the function of antigen-presenting cells (APC) revealed no major change in APC function of peritoneal cells (PC) harvested from the peritoneal cavity of mice 1-3 days after intraperitoneal immunization with S. enteritidis 11RX. Analysis of the phenotype of the Salmonella-primed T cells which responded when cultured with PC from either normal or infected mice and Salmonella-antigen showed that only L3T4+ T cells proliferated. This was also true when PC from normal and infected mice were compared for their ability to induce allogeneic responses; both L3T4+ and Lyt-2.2+ T cells were induced to proliferate, with the majority belonging to the class I restricted, Lyt-2.2+ phenotype. Significant levels of alloantigen-specific Lyt-2.2+ cytotoxic T-cell activity were also induced in both types of cultures. However, a minor population of adherent cells which inhibited Salmonella antigen-specific T-cell proliferation in vitro was detected in peritoneal cell suspensions harvested 3 days after intraperitoneal immunization with S. enteritidis 11RX. Further characterization of these peritoneal cells revealed that they also inhibited the induction of in vitro T-cell responses to alloantigens. It is likely that the cells mediating these inhibitory effects belonged to a macrophage-like subset.

Full text

PDF
289

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. O., Hamilton T. A. The cell biology of macrophage activation. Annu Rev Immunol. 1984;2:283–318. doi: 10.1146/annurev.iy.02.040184.001435. [DOI] [PubMed] [Google Scholar]
  2. Ashley M. P., Kotlarski I. In vitro and in vivo cytotoxicity induced by an attenuated Salmonella: relation to bacterial carrier state and resistance to tumour growth. Aust J Exp Biol Med Sci. 1982 Feb;60(Pt 1):1–21. doi: 10.1038/icb.1982.1. [DOI] [PubMed] [Google Scholar]
  3. Britz J. S., Askenase P. W., Ptak W., Steinman R. M., Gershon R. K. Specialized antigen-presenting cells. Splenic dendritic cells and peritoneal-exudate cells induced by mycobacteria activate effector T cells that are resistant to suppression. J Exp Med. 1982 May 1;155(5):1344–1356. doi: 10.1084/jem.155.5.1344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chouaib S., Welte K., Mertelsmann R., Dupont B. Prostaglandin E2 acts at two distinct pathways of T lymphocyte activation: inhibition of interleukin 2 production and down-regulation of transferrin receptor expression. J Immunol. 1985 Aug;135(2):1172–1179. [PubMed] [Google Scholar]
  5. Collins F. M. Immunity to enteric infection in mice. Infect Immun. 1970 Mar;1(3):243–250. doi: 10.1128/iai.1.3.243-250.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davies R., Kotlarski I. The effect of immunization with a rough strain of Salmonella enteritidis on the fate of Salmonella typhimurium in mice. Aust J Exp Biol Med Sci. 1974 Oct;52(5):779–789. doi: 10.1038/icb.1974.77. [DOI] [PubMed] [Google Scholar]
  7. Deschenes M., Guenounou M., Ronco E., Vacheron F., Nauciel C. Impairment of lymphocyte proliferative responses and interleukin-2 production in susceptible (C57BL/6) mice infected with Salmonella typhimurium. Immunology. 1986 Jun;58(2):225–230. [PMC free article] [PubMed] [Google Scholar]
  8. Doherty P. C., Blanden R. V., Zinkernagel R. M. Specificity of virus-immune effector T cells for H-2K or H-2D compatible interactions: implications for H-antigen diversity. Transplant Rev. 1976;29:89–124. doi: 10.1111/j.1600-065x.1976.tb00198.x. [DOI] [PubMed] [Google Scholar]
  9. Fitch F. W. T-cell clones and T-cell receptors. Microbiol Rev. 1986 Mar;50(1):50–69. doi: 10.1128/mr.50.1.50-69.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Flesch I. E., Kaufmann S. H. Stimulation of antibacterial macrophage activities by B-cell stimulatory factor 2 (interleukin-6). Infect Immun. 1990 Jan;58(1):269–271. doi: 10.1128/iai.58.1.269-271.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Germanier R. Immunity in experimental salmonellosis. 3. Comparative immunization with viable and heat-inactivated cells of Salmonella typhimurium. Infect Immun. 1972 May;5(5):792–797. doi: 10.1128/iai.5.5.792-797.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Granstein R. D., Lowy A., Greene M. I. Epidermal antigen-presenting cells in activation of suppression: identification of a new functional type of ultraviolet radiation-resistant epidermal cell. J Immunol. 1984 Feb;132(2):563–565. [PubMed] [Google Scholar]
  13. Heeg K., Steeg C., Hardt C., Wagner H. Identification of interleukin 2-producing T helper cells within murine Lyt-2+ T lymphocytes: frequency, specificity and clonal segregation from Lyt-2+ precursors of cytotoxic T lymphocytes. Eur J Immunol. 1987 Feb;17(2):229–236. doi: 10.1002/eji.1830170213. [DOI] [PubMed] [Google Scholar]
  14. Heeg K., Steeg C., Schmitt J., Wagner H. Frequency analysis of class I MHC-reactive Lyt-2+ and class II MHC-reactive L3T4+ IL 2-secreting T lymphocytes. J Immunol. 1987 Jun 15;138(12):4121–4127. [PubMed] [Google Scholar]
  15. JENKIN C. R., ROWLEY D. PARTIAL PURIFICATION OF THE "PROTECTIVE" ANTIGEN OF SALMONELLA TYPHIMURIUM AND ITS DISTRIBUTION AMONGST VARIOUS STRAINS OF BACTERIA. Aust J Exp Biol Med Sci. 1965 Feb;43:65–78. doi: 10.1038/icb.1965.5. [DOI] [PubMed] [Google Scholar]
  16. Jungi T. W. In vitro proliferation of T lymphocytes from Listeria-infected rodents: assay conditions for rat peritoneal exudate cells and characterization of an inhibitor. Infect Immun. 1980 Dec;30(3):741–752. doi: 10.1128/iai.30.3.741-752.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kaufmann S. H., Simon M. M., Hahn H. Regulatory interactions between macrophages and T-cell subsets in Listeria monocytogenes-specific T-cell activation. Infect Immun. 1982 Dec;38(3):907–913. doi: 10.1128/iai.38.3.907-913.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kawakami K., Yamamoto Y., Kakimoto K., Onoue K. Requirement for delivery of signals by physical interaction and soluble factors from accessory cells in the induction of receptor-mediated T cell proliferation. Effectiveness of IFN-gamma modulation of accessory cells for physical interaction with T cells. J Immunol. 1989 Mar 15;142(6):1818–1825. [PubMed] [Google Scholar]
  19. Kaye P. M., Feldmann M. Regulation of macrophage accessory cell activity by mycobacteria. I. Ia expression in normal and irradiated mice infected with Mycobacterium microti. Clin Exp Immunol. 1986 Apr;64(1):20–27. [PMC free article] [PubMed] [Google Scholar]
  20. Klimpel G. R., Henney C. S. BCG-induced suppressor cells. I. Demonstration of a macrophage-like suppressor cell that inhibits cytotoxic T cell generation in vitro. J Immunol. 1978 Feb;120(2):563–569. [PubMed] [Google Scholar]
  21. Kotlarski I., Pope M., Doherty K., Attridge S. R. The in vitro proliferative response of lymphoid cells of mice infected with Salmonella enteritidis 11RX. Immunol Cell Biol. 1989 Feb;67(Pt 1):19–29. doi: 10.1038/icb.1989.3. [DOI] [PubMed] [Google Scholar]
  22. Matis L. A., Glimcher L. H., Paul W. E., Schwartz R. H. Magnitude of response of histocompatibility-restricted T-cell clones is a function of the product of the concentrations of antigen and Ia molecules. Proc Natl Acad Sci U S A. 1983 Oct;80(19):6019–6023. doi: 10.1073/pnas.80.19.6019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ramila G., Erb P. Accessory cell-dependent selection of specific T-cell functions. Nature. 1983 Aug 4;304(5925):442–445. doi: 10.1038/304442a0. [DOI] [PubMed] [Google Scholar]
  24. Ramila G., Studer S., Mischler S., Erb P. Evaluation of Ia+ tumor cell lines and peritoneal exudate macrophages as accessory cells: differential requirements for the activation of certain T cell functions. J Immunol. 1983 Dec;131(6):2714–2718. [PubMed] [Google Scholar]
  25. Rowley D., Auzins I., Jenkin C. R. Further studies regarding the question of cellular immunity in mouse typhoid. Aust J Exp Biol Med Sci. 1968 Aug;46(4):447–463. doi: 10.1038/icb.1968.38. [DOI] [PubMed] [Google Scholar]
  26. Sprent J., Schaefer M. Antigen-presenting cells for CD8+ T cells. Immunol Rev. 1990 Oct;117:213–234. doi: 10.1111/j.1600-065x.1990.tb00574.x. [DOI] [PubMed] [Google Scholar]
  27. Sprent J., Schaefer M. Antigen-presenting cells for unprimed T cells. Immunol Today. 1989 Jan;10(1):17–23. doi: 10.1016/0167-5699(89)90060-1. [DOI] [PubMed] [Google Scholar]
  28. Sprent J., Schaefer M. Capacity of purified Lyt-2+ T cells to mount primary proliferative and cytotoxic responses to Ia- tumour cells. Nature. 1986 Aug 7;322(6079):541–544. doi: 10.1038/322541a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Vordermeier H. M., Kotlarski I. Partial purification and characterization of low molecular weight antigens of Salmonella enteritidis 11RX. Immunol Cell Biol. 1990 Oct;68(Pt 5):307–316. doi: 10.1038/icb.1990.42. [DOI] [PubMed] [Google Scholar]
  30. Vordermeier H. M., Pope M., Kotlarski I. Presentation of Salmonella antigens by peritoneal cells of normal and Salmonella-infected mice. Immunol Cell Biol. 1990 Jun;68(Pt 3):161–172. doi: 10.1038/icb.1990.23. [DOI] [PubMed] [Google Scholar]
  31. Wong G. G., Clark S. C. Multiple actions of interleukin 6 within a cytokine network. Immunol Today. 1988 May;9(5):137–139. doi: 10.1016/0167-5699(88)91200-5. [DOI] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES