Abstract
Investigation of the possibility that infection with intracellular bacterial parasites such as Salmonellae may modulate the function of antigen-presenting cells (APC) revealed no major change in APC function of peritoneal cells (PC) harvested from the peritoneal cavity of mice 1-3 days after intraperitoneal immunization with S. enteritidis 11RX. Analysis of the phenotype of the Salmonella-primed T cells which responded when cultured with PC from either normal or infected mice and Salmonella-antigen showed that only L3T4+ T cells proliferated. This was also true when PC from normal and infected mice were compared for their ability to induce allogeneic responses; both L3T4+ and Lyt-2.2+ T cells were induced to proliferate, with the majority belonging to the class I restricted, Lyt-2.2+ phenotype. Significant levels of alloantigen-specific Lyt-2.2+ cytotoxic T-cell activity were also induced in both types of cultures. However, a minor population of adherent cells which inhibited Salmonella antigen-specific T-cell proliferation in vitro was detected in peritoneal cell suspensions harvested 3 days after intraperitoneal immunization with S. enteritidis 11RX. Further characterization of these peritoneal cells revealed that they also inhibited the induction of in vitro T-cell responses to alloantigens. It is likely that the cells mediating these inhibitory effects belonged to a macrophage-like subset.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams D. O., Hamilton T. A. The cell biology of macrophage activation. Annu Rev Immunol. 1984;2:283–318. doi: 10.1146/annurev.iy.02.040184.001435. [DOI] [PubMed] [Google Scholar]
- Ashley M. P., Kotlarski I. In vitro and in vivo cytotoxicity induced by an attenuated Salmonella: relation to bacterial carrier state and resistance to tumour growth. Aust J Exp Biol Med Sci. 1982 Feb;60(Pt 1):1–21. doi: 10.1038/icb.1982.1. [DOI] [PubMed] [Google Scholar]
- Britz J. S., Askenase P. W., Ptak W., Steinman R. M., Gershon R. K. Specialized antigen-presenting cells. Splenic dendritic cells and peritoneal-exudate cells induced by mycobacteria activate effector T cells that are resistant to suppression. J Exp Med. 1982 May 1;155(5):1344–1356. doi: 10.1084/jem.155.5.1344. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chouaib S., Welte K., Mertelsmann R., Dupont B. Prostaglandin E2 acts at two distinct pathways of T lymphocyte activation: inhibition of interleukin 2 production and down-regulation of transferrin receptor expression. J Immunol. 1985 Aug;135(2):1172–1179. [PubMed] [Google Scholar]
- Collins F. M. Immunity to enteric infection in mice. Infect Immun. 1970 Mar;1(3):243–250. doi: 10.1128/iai.1.3.243-250.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies R., Kotlarski I. The effect of immunization with a rough strain of Salmonella enteritidis on the fate of Salmonella typhimurium in mice. Aust J Exp Biol Med Sci. 1974 Oct;52(5):779–789. doi: 10.1038/icb.1974.77. [DOI] [PubMed] [Google Scholar]
- Deschenes M., Guenounou M., Ronco E., Vacheron F., Nauciel C. Impairment of lymphocyte proliferative responses and interleukin-2 production in susceptible (C57BL/6) mice infected with Salmonella typhimurium. Immunology. 1986 Jun;58(2):225–230. [PMC free article] [PubMed] [Google Scholar]
- Doherty P. C., Blanden R. V., Zinkernagel R. M. Specificity of virus-immune effector T cells for H-2K or H-2D compatible interactions: implications for H-antigen diversity. Transplant Rev. 1976;29:89–124. doi: 10.1111/j.1600-065x.1976.tb00198.x. [DOI] [PubMed] [Google Scholar]
- Fitch F. W. T-cell clones and T-cell receptors. Microbiol Rev. 1986 Mar;50(1):50–69. doi: 10.1128/mr.50.1.50-69.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flesch I. E., Kaufmann S. H. Stimulation of antibacterial macrophage activities by B-cell stimulatory factor 2 (interleukin-6). Infect Immun. 1990 Jan;58(1):269–271. doi: 10.1128/iai.58.1.269-271.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Germanier R. Immunity in experimental salmonellosis. 3. Comparative immunization with viable and heat-inactivated cells of Salmonella typhimurium. Infect Immun. 1972 May;5(5):792–797. doi: 10.1128/iai.5.5.792-797.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Granstein R. D., Lowy A., Greene M. I. Epidermal antigen-presenting cells in activation of suppression: identification of a new functional type of ultraviolet radiation-resistant epidermal cell. J Immunol. 1984 Feb;132(2):563–565. [PubMed] [Google Scholar]
- Heeg K., Steeg C., Hardt C., Wagner H. Identification of interleukin 2-producing T helper cells within murine Lyt-2+ T lymphocytes: frequency, specificity and clonal segregation from Lyt-2+ precursors of cytotoxic T lymphocytes. Eur J Immunol. 1987 Feb;17(2):229–236. doi: 10.1002/eji.1830170213. [DOI] [PubMed] [Google Scholar]
- Heeg K., Steeg C., Schmitt J., Wagner H. Frequency analysis of class I MHC-reactive Lyt-2+ and class II MHC-reactive L3T4+ IL 2-secreting T lymphocytes. J Immunol. 1987 Jun 15;138(12):4121–4127. [PubMed] [Google Scholar]
- JENKIN C. R., ROWLEY D. PARTIAL PURIFICATION OF THE "PROTECTIVE" ANTIGEN OF SALMONELLA TYPHIMURIUM AND ITS DISTRIBUTION AMONGST VARIOUS STRAINS OF BACTERIA. Aust J Exp Biol Med Sci. 1965 Feb;43:65–78. doi: 10.1038/icb.1965.5. [DOI] [PubMed] [Google Scholar]
- Jungi T. W. In vitro proliferation of T lymphocytes from Listeria-infected rodents: assay conditions for rat peritoneal exudate cells and characterization of an inhibitor. Infect Immun. 1980 Dec;30(3):741–752. doi: 10.1128/iai.30.3.741-752.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaufmann S. H., Simon M. M., Hahn H. Regulatory interactions between macrophages and T-cell subsets in Listeria monocytogenes-specific T-cell activation. Infect Immun. 1982 Dec;38(3):907–913. doi: 10.1128/iai.38.3.907-913.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawakami K., Yamamoto Y., Kakimoto K., Onoue K. Requirement for delivery of signals by physical interaction and soluble factors from accessory cells in the induction of receptor-mediated T cell proliferation. Effectiveness of IFN-gamma modulation of accessory cells for physical interaction with T cells. J Immunol. 1989 Mar 15;142(6):1818–1825. [PubMed] [Google Scholar]
- Kaye P. M., Feldmann M. Regulation of macrophage accessory cell activity by mycobacteria. I. Ia expression in normal and irradiated mice infected with Mycobacterium microti. Clin Exp Immunol. 1986 Apr;64(1):20–27. [PMC free article] [PubMed] [Google Scholar]
- Klimpel G. R., Henney C. S. BCG-induced suppressor cells. I. Demonstration of a macrophage-like suppressor cell that inhibits cytotoxic T cell generation in vitro. J Immunol. 1978 Feb;120(2):563–569. [PubMed] [Google Scholar]
- Kotlarski I., Pope M., Doherty K., Attridge S. R. The in vitro proliferative response of lymphoid cells of mice infected with Salmonella enteritidis 11RX. Immunol Cell Biol. 1989 Feb;67(Pt 1):19–29. doi: 10.1038/icb.1989.3. [DOI] [PubMed] [Google Scholar]
- Matis L. A., Glimcher L. H., Paul W. E., Schwartz R. H. Magnitude of response of histocompatibility-restricted T-cell clones is a function of the product of the concentrations of antigen and Ia molecules. Proc Natl Acad Sci U S A. 1983 Oct;80(19):6019–6023. doi: 10.1073/pnas.80.19.6019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramila G., Erb P. Accessory cell-dependent selection of specific T-cell functions. Nature. 1983 Aug 4;304(5925):442–445. doi: 10.1038/304442a0. [DOI] [PubMed] [Google Scholar]
- Ramila G., Studer S., Mischler S., Erb P. Evaluation of Ia+ tumor cell lines and peritoneal exudate macrophages as accessory cells: differential requirements for the activation of certain T cell functions. J Immunol. 1983 Dec;131(6):2714–2718. [PubMed] [Google Scholar]
- Rowley D., Auzins I., Jenkin C. R. Further studies regarding the question of cellular immunity in mouse typhoid. Aust J Exp Biol Med Sci. 1968 Aug;46(4):447–463. doi: 10.1038/icb.1968.38. [DOI] [PubMed] [Google Scholar]
- Sprent J., Schaefer M. Antigen-presenting cells for CD8+ T cells. Immunol Rev. 1990 Oct;117:213–234. doi: 10.1111/j.1600-065x.1990.tb00574.x. [DOI] [PubMed] [Google Scholar]
- Sprent J., Schaefer M. Antigen-presenting cells for unprimed T cells. Immunol Today. 1989 Jan;10(1):17–23. doi: 10.1016/0167-5699(89)90060-1. [DOI] [PubMed] [Google Scholar]
- Sprent J., Schaefer M. Capacity of purified Lyt-2+ T cells to mount primary proliferative and cytotoxic responses to Ia- tumour cells. Nature. 1986 Aug 7;322(6079):541–544. doi: 10.1038/322541a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vordermeier H. M., Kotlarski I. Partial purification and characterization of low molecular weight antigens of Salmonella enteritidis 11RX. Immunol Cell Biol. 1990 Oct;68(Pt 5):307–316. doi: 10.1038/icb.1990.42. [DOI] [PubMed] [Google Scholar]
- Vordermeier H. M., Pope M., Kotlarski I. Presentation of Salmonella antigens by peritoneal cells of normal and Salmonella-infected mice. Immunol Cell Biol. 1990 Jun;68(Pt 3):161–172. doi: 10.1038/icb.1990.23. [DOI] [PubMed] [Google Scholar]
- Wong G. G., Clark S. C. Multiple actions of interleukin 6 within a cytokine network. Immunol Today. 1988 May;9(5):137–139. doi: 10.1016/0167-5699(88)91200-5. [DOI] [PubMed] [Google Scholar]