Abstract
In rats, complete Freund's adjuvant (CFA), injected at the base of the tail, induced a hyperactivation of cellular immune functions and triggered the development of adjuvant arthritis (AA). Before onset of arthritis (Days 9-10 upon CFA), the positive control rats showed significant increases of pituitary prolactin (Prl) mRNA accumulation (Days 3-5). On the other hand, production of pituitary growth hormone (GH) mRNA was significantly reduced from Day 3 onwards. During this early latent period, plasma Prl levels were transiently increased (at least on Day 4), while GH levels were reduced within 8 days (and onwards). Pituitary proopiomelanocortin (POMC) mRNA content progressively decreased with a nadir between Days 6 and 8, accompanied by a loss of the adrenocortical ornithine decarboxylase (ODC) circadian rhythm of activity and a transient reduction of plasma corticosterone (CS) levels (Days 3-6, obvious during the dark phase). At onset of arthritis, the POMC mRNA accumulation and adrenocortical ODC activity increased over their respective baselines. Elevation of plasma CS levels (obvious during the light phase) and important CS-induced thymolysis occurred. Further, hypophysectomized rats did not develop AA. However, hypophysectomized male rats carrying pituitary grafts under the kidney capsule had mild hyperprolactinaemia and developed a worsened arthritic response to CFA, compared to sham-operated controls. On the other hand, intact hyperprolactinaemic male rats showed a delay in the onset and a reduction in the severity of AA. This difference might be due to stimulation of the adrenal cortex in intact pituitary-grafted rats. Such rats showed increased baselines of pituitary POMC mRNA production, adrenocortical ODC activity and plasma CS levels. In addition, during the latent period after CFA, POMC mRNA accumulation, adrenocortical ODC activity and plasma CS levels were only partially suppressed, less than in sham-operated rats. Extensive thymolysis occurred after CFA in these animals--as in the sham-operated rats--but not in the hypophysectomized pituitary-implanted rats. This suggested that in the presence of adrenocortical deficiency, Prl released by the pituitary graft can freely act on the immune system, without being counter-regulated by CS.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adler R. A. The anterior pituitary-grafted rat: a valid model of chronic hyperprolactinemia. Endocr Rev. 1986 Aug;7(3):302–313. doi: 10.1210/edrv-7-3-302. [DOI] [PubMed] [Google Scholar]
- Ben-Jonathan N. Dopamine: a prolactin-inhibiting hormone. Endocr Rev. 1985 Fall;6(4):564–589. doi: 10.1210/edrv-6-4-564. [DOI] [PubMed] [Google Scholar]
- Berczi I., Nagy E. A possible role of prolactin in adjuvant arthritis. Arthritis Rheum. 1982 May;25(5):591–594. doi: 10.1002/art.1780250517. [DOI] [PubMed] [Google Scholar]
- Bernton E. W., Meltzer M. S., Holaday J. W. Suppression of macrophage activation and T-lymphocyte function in hypoprolactinemic mice. Science. 1988 Jan 22;239(4838):401–404. doi: 10.1126/science.3122324. [DOI] [PubMed] [Google Scholar]
- Edwards C. K., 3rd, Schepper J. M., Yunger L. M., Kelley K. W. Somatotropin and prolactin enhance respiratory burst activity of macrophages. Ann N Y Acad Sci. 1988;540:698–699. doi: 10.1111/j.1749-6632.1988.tb27216.x. [DOI] [PubMed] [Google Scholar]
- Feige J. J., Madani C., Chambaz E. M. Hormonal control of polyamine levels in bovine adrenocortical cells. Endocrinology. 1986 Mar;118(3):1059–1066. doi: 10.1210/endo-118-3-1059. [DOI] [PubMed] [Google Scholar]
- Fernandez-Ruiz J., Cebeira M., Agrasal C., Tresguerres J. A., Esquifino A. I., Ramos J. A. Effect of elevated prolactin levels on the synthesis and release of catecholamines from the adrenal medulla in female rats. Neuroendocrinology. 1987 Mar;45(3):208–211. doi: 10.1159/000124727. [DOI] [PubMed] [Google Scholar]
- Fernández-Ruiz J. J., Ubeda E., Cebeira M., Agrasal C., Tresguerres J. A., Ramos J. A., Esquifino A. I. Modifications of plasma prolactin levels and catecholamine content in an ectopic anterior pituitary gland transplanted under the kidney capsule. Horm Res. 1987;25(2):105–112. doi: 10.1159/000180640. [DOI] [PubMed] [Google Scholar]
- Forni G., Bindoni M., Santoni A., Belluardo N., Marchese A. E., Giovarelli M. Radiofrequency destruction of the tuberoinfundibular region of hypothalamus permanently abrogates NK cell activity in mice. Nature. 1983 Nov 10;306(5939):181–184. doi: 10.1038/306181a0. [DOI] [PubMed] [Google Scholar]
- Harbuz M. S., Rees R. G., Eckland D., Jessop D. S., Brewerton D., Lightman S. L. Paradoxical responses of hypothalamic corticotropin-releasing factor (CRF) messenger ribonucleic acid (mRNA) and CRF-41 peptide and adenohypophysial proopiomelanocortin mRNA during chronic inflammatory stress. Endocrinology. 1992 Mar;130(3):1394–1400. doi: 10.1210/endo.130.3.1537299. [DOI] [PubMed] [Google Scholar]
- Hiestand P. C., Mekler P., Nordmann R., Grieder A., Permmongkol C. Prolactin as a modulator of lymphocyte responsiveness provides a possible mechanism of action for cyclosporine. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2599–2603. doi: 10.1073/pnas.83.8.2599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Korneva E. A. Electrophysiological analysis of brain reactions to antigen. Ann N Y Acad Sci. 1987;496:318–337. doi: 10.1111/j.1749-6632.1987.tb35784.x. [DOI] [PubMed] [Google Scholar]
- Krawetz S. A., States J. C., Dixon G. H. Isolation and fractionation of total nucleic acids from tissues and cells. J Biochem Biophys Methods. 1986 Jan;12(1-2):29–36. doi: 10.1016/0165-022x(86)90048-5. [DOI] [PubMed] [Google Scholar]
- Levine J. D., Goetzl E. J., Basbaum A. I. Contribution of the nervous system to the pathophysiology of rheumatoid arthritis and other polyarthritides. Rheum Dis Clin North Am. 1987 Aug;13(2):369–383. [PubMed] [Google Scholar]
- Masek K. Immunopharmacology of muramyl peptides. Fed Proc. 1986 Oct;45(11):2549–2551. [PubMed] [Google Scholar]
- Mathison J. C., Schreiber R. D., La Forest A. C., Ulevitch R. J. Suppression of ACTH-induced steroidogenesis by supernatants from LPS-treated peritoneal exudate macrophages. J Immunol. 1983 Jun;130(6):2757–2762. [PubMed] [Google Scholar]
- Mukherjee P., Mastro A. M., Hymer W. C. Prolactin induction of interleukin-2 receptors on rat splenic lymphocytes. Endocrinology. 1990 Jan;126(1):88–94. doi: 10.1210/endo-126-1-88. [DOI] [PubMed] [Google Scholar]
- Nagy E., Friesen H. G., Sehon A. H., Berczi I. Immunomodulation in rats by transplantable anterior pituitary tumors. Endocrinology. 1985 Mar;116(3):1117–1122. doi: 10.1210/endo-116-3-1117. [DOI] [PubMed] [Google Scholar]
- Neidhart M. Bromocriptine microcapsules inhibit ornithine decarboxylase activity induced by Freund's complete adjuvant in lymphoid tissues of male rats. Endocrinology. 1989 Dec;125(6):2846–2852. doi: 10.1210/endo-125-6-2846. [DOI] [PubMed] [Google Scholar]
- Neidhart M., Larson D. F. Freund's complete adjuvant induces ornithine decarboxylase activity in the central nervous system of male rats and triggers the release of pituitary hormones. J Neuroimmunol. 1990 Feb;26(2):97–105. doi: 10.1016/0165-5728(90)90080-7. [DOI] [PubMed] [Google Scholar]
- Oosterom R., Verleun T., Zuiderwijk J., Uitterlinden P., Lamberts S. W. Effect of long-term corticosteroid administration on rat pituitary growth hormone and prolactin. Acta Endocrinol (Copenh) 1985 Apr;108(4):475–478. doi: 10.1530/acta.0.1080475. [DOI] [PubMed] [Google Scholar]
- Ovadia H., Abramsky O., Barak V., Conforti N., Saphier D., Weidenfeld J. Effect of interleukin-1 on adrenocortical activity in intact and hypothalamic deafferentated male rats. Exp Brain Res. 1989;76(1):246–249. doi: 10.1007/BF00253643. [DOI] [PubMed] [Google Scholar]
- Panerai A. E., Sacerdote P., Bianchi M., Brini A., Mantegazza P. Brain and spinal cord neuropeptides in adjuvant induced arthritis in rats. Life Sci. 1987 Sep 7;41(10):1297–1303. doi: 10.1016/0024-3205(87)90209-8. [DOI] [PubMed] [Google Scholar]
- Sarlis N. J., Chowdrey H. S., Stephanou A., Lightman S. L. Chronic activation of the hypothalamo-pituitary-adrenal axis and loss of circadian rhythm during adjuvant-induced arthritis in the rat. Endocrinology. 1992 Apr;130(4):1775–1779. doi: 10.1210/endo.130.4.1312424. [DOI] [PubMed] [Google Scholar]
- Signorella A. P., Hymer W. C. Characterization of a substance in rat serum which modulates prolactin release in vitro. Mol Cell Endocrinol. 1986 Nov;48(1):1–10. doi: 10.1016/0303-7207(86)90160-7. [DOI] [PubMed] [Google Scholar]
- Spangelo B. L., Judd A. M., Isakson P. C., MacLeod R. M. Interleukin-6 stimulates anterior pituitary hormone release in vitro. Endocrinology. 1989 Jul;125(1):575–577. doi: 10.1210/endo-125-1-575. [DOI] [PubMed] [Google Scholar]
- Sternberg E. M., Young W. S., 3rd, Bernardini R., Calogero A. E., Chrousos G. P., Gold P. W., Wilder R. L. A central nervous system defect in biosynthesis of corticotropin-releasing hormone is associated with susceptibility to streptococcal cell wall-induced arthritis in Lewis rats. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4771–4775. doi: 10.1073/pnas.86.12.4771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uehara A., Gillis S., Arimura A. Effects of interleukin-1 on hormone release from normal rat pituitary cells in primary culture. Neuroendocrinology. 1987 May;45(5):343–347. doi: 10.1159/000124757. [DOI] [PubMed] [Google Scholar]