Abstract
Alveolar macrophages (AM) from normal rats had immunosuppressive activity to mitogen-induced proliferative responses of splenic lymphocytes. We studied the mechanism and the implication of the nitric oxide synthetase pathway in AM-mediated suppression of concanavalin A (Con A)-induced lymphocyte proliferation. The culture supernatant from AM cultures alone did not have immunosuppressive activity to Con A-induced proliferative responses of non-adherent spleen cells (n-ad SC), but the culture supernatant from co-culture of AM and autologous n-ad SC had this activity. Con A-pulsed AM also liberated the immunosuppressive factor. When AM and autologous n-ad SC were cultured separately under the condition that medium could freely communicate, the culture supernatant did not suppress the Con A-induced proliferative response of n-ad SC. This indicated that the immunosuppressive factor was liberated when AM was activated by cell-to-cell contact with n-ad SC. Further, we examined the immunosuppressive activity of the culture supernatant of co-culture of AM and autologous n-ad SC to Con A-induced responses of allogeneic n-ad SC and xenogeneic murine n-ad SC, and allogeneic mixed leucocyte reaction, and found that this culture supernatant could suppress all these proliferative responses. Nitrate (NO2-) synthesis was markedly augmented in the culture supernatants of Con A-pulsed AM and co-culture of AM and n-ad SC. NG-monomethyl-L-arginine (MMA), a specific competitive inhibitor of the nitric oxide synthetase pathway (NOSP), extinguished both NO2- synthesis by AM and AM-mediated immunosuppressive activity. These data suggest that NOSP was important in AM-mediated suppression of Con A-induced lymphocyte proliferation.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albina J. E., Henry W. L., Jr Suppression of lymphocyte proliferation through the nitric oxide synthesizing pathway. J Surg Res. 1991 Apr;50(4):403–409. doi: 10.1016/0022-4804(91)90210-d. [DOI] [PubMed] [Google Scholar]
- Ansfield M. J., Kaltreider H. B., Caldwell J. L., Herskowitz F. N. Hyporesponsiveness of canine bronchoalveolar lymphocytes to mitogens: inhibition of lymphocyte proliferation by alveolar macrophages. J Immunol. 1979 Feb;122(2):542–548. [PubMed] [Google Scholar]
- Ding A. H., Nathan C. F., Stuehr D. J. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol. 1988 Oct 1;141(7):2407–2412. [PubMed] [Google Scholar]
- Ettensohn D. B., Roberts N. J., Jr Human alveolar macrophage support of lymphocyte responses to mitogens and antigens. Analysis and comparison with autologous peripheral-blood-derived monocytes and macrophages. Am Rev Respir Dis. 1983 Sep;128(3):516–522. doi: 10.1164/arrd.1983.128.3.516. [DOI] [PubMed] [Google Scholar]
- Ferrick D. A., Herscowitz H. B. Cell interactions in alveolar macrophage-mediated suppression of the immune response: an unusual suppressor pathway involving a population of T-cells that express Lyt-1, L3T4, and I-J. Cell Immunol. 1988 Oct 1;116(1):183–194. doi: 10.1016/0008-8749(88)90220-1. [DOI] [PubMed] [Google Scholar]
- Harmsen A. G., Muggenburg B. A., Snipes M. B., Bice D. E. The role of macrophages in particle translocation from lungs to lymph nodes. Science. 1985 Dec 13;230(4731):1277–1280. doi: 10.1126/science.4071052. [DOI] [PubMed] [Google Scholar]
- Hibbs J. B., Jr, Taintor R. R., Vavrin Z. Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science. 1987 Jan 23;235(4787):473–476. doi: 10.1126/science.2432665. [DOI] [PubMed] [Google Scholar]
- Hibbs J. B., Jr, Vavrin Z., Taintor R. R. L-arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J Immunol. 1987 Jan 15;138(2):550–565. [PubMed] [Google Scholar]
- Holt P. G. Alveolar macrophages. II. Inhibition of lymphocyte proliferation by purified macrophages from rat lung. Immunology. 1979 Jun;37(2):429–436. [PMC free article] [PubMed] [Google Scholar]
- Holt P. G. Alveolar macrophages. III. Studies on the mechanisms of inhibition of T-cell proliferation. Immunology. 1979 Jun;37(2):437–445. [PMC free article] [PubMed] [Google Scholar]
- Holt P. G. Alveolar macrophages. IV. Interspecies differences in activity in proliferating lymphocyte cultures. Cell Immunol. 1980 Mar 1;50(1):210–215. doi: 10.1016/0008-8749(80)90020-9. [DOI] [PubMed] [Google Scholar]
- Holt P. G. Inhibitory activity of unstimulated alveolar macrophages on T-lymphocyte blastogenic response. Am Rev Respir Dis. 1978 Oct;118(4):791–793. doi: 10.1164/arrd.1978.118.4.791. [DOI] [PubMed] [Google Scholar]
- Laughter A. H., Martin R. R., Twomey J. J. Lymphoproliferative responses to antigens mediated by human pulmonary alveolar macrophages. J Lab Clin Med. 1977 Jun;89(6):1326–1332. [PubMed] [Google Scholar]
- McCombs C. C., Michalski J. P., Westerfield B. T., Light R. W. Human alveolar macrophages suppress the proliferative response of peripheral blood lymphocytes. Chest. 1982 Sep;82(3):266–271. doi: 10.1378/chest.82.3.266. [DOI] [PubMed] [Google Scholar]
- Mills C. D. Molecular basis of "suppressor" macrophages. Arginine metabolism via the nitric oxide synthetase pathway. J Immunol. 1991 Apr 15;146(8):2719–2723. [PubMed] [Google Scholar]
- Rich E. A., Cooper C., Toossi Z., Leonard M. L., Stucky R. M., Wiblin R. T., Ellner J. J. Requirement for cell-to-cell contact for the immunosuppressive activity of human alveolar macrophages. Am J Respir Cell Mol Biol. 1991 Mar;4(3):287–294. doi: 10.1165/ajrcmb/4.3.287. [DOI] [PubMed] [Google Scholar]
- Rich E. A., Tweardy D. J., Fujiwara H., Ellner J. J. Spectrum of immunoregulatory functions and properties of human alveolar macrophages. Am Rev Respir Dis. 1987 Aug;136(2):258–265. doi: 10.1164/ajrccm/136.2.258. [DOI] [PubMed] [Google Scholar]
- Thepen T., Van Rooijen N., Kraal G. Alveolar macrophage elimination in vivo is associated with an increase in pulmonary immune response in mice. J Exp Med. 1989 Aug 1;170(2):499–509. doi: 10.1084/jem.170.2.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Toews G. B., Vial W. C., Dunn M. M., Guzzetta P., Nunez G., Stastny P., Lipscomb M. F. The accessory cell function of human alveolar macrophages in specific T cell proliferation. J Immunol. 1984 Jan;132(1):181–186. [PubMed] [Google Scholar]
- Yeager H., Jr, Sweeney J. A., Herscowitz H. B., Barsoum I. S., Kagan E. Modulation of mitogen-induced proliferation of autologous peripheral blood lymphocytes by human alveolar macrophages. Infect Immun. 1982 Oct;38(1):260–266. doi: 10.1128/iai.38.1.260-266.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
