Skip to main content
Immunology logoLink to Immunology
. 1993 Feb;78(2):171–176.

Interferon-gamma-activated monocytes impair infectivity of HIV particles by an oxygen metabolite-dependent reaction.

J Ennen 1, R Kurth 1
PMCID: PMC1421807  PMID: 8473009

Abstract

Mononuclear phagocytes generate microbicidal oxygen metabolites spontaneously and after phagocytic stimulation by a NADPH-dependent enzymatic reaction called the oxidative burst. The spontaneous release of reactive oxygen radicals and intermediates (ROI) increases five- to eightfold after treatment of monocytes with the lymphokine interferon-gamma (IFN-gamma). The effect of the IFN-gamma-activated release of ROI by human monocytes on the infectivity of free human immunodeficiency virus (HIV) in the supernatant was investigated with the following results. First, IFN-gamma-activated, but neither control monocytes nor lipopolysaccharide-stimulated monocytes effectively decreased the infectivity of cell-free HIV-1 in culture medium supernatant. Second, the mechanism of inactivation was dependent on the enhanced spontaneous release of ROI by IFN-gamma-activated mononuclear phagocytes, since either the enzyme catalase or the free radical scavenger butylated hydroxyanisole (BHA) could block this activity. Third, soluble and solid-phase HIV-1 outer envelope glycoprotein (gp120) failed to trigger the oxidative burst activity after specific gp120-monocytic CD4 receptor interaction. These results indicate an anti-viral effect of IFN-gamma-activated monocytes/macrophages on HIV-1 which may have important implications for our understanding of spread of the virus in the body and the development of full-blown AIDS after a long period of latency.

Full text

PDF
171

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bender B. S., Davidson B. L., Kline R., Brown C., Quinn T. C. Role of the mononuclear phagocyte system in the immunopathogenesis of human immunodeficiency virus infection and the acquired immunodeficiency syndrome. Rev Infect Dis. 1988 Nov-Dec;10(6):1142–1154. doi: 10.1093/clinids/10.6.1142. [DOI] [PubMed] [Google Scholar]
  2. Binninger D., Ennen J., Bonn D., Norley S. G., Kurth R. Mutational analysis of the simian immunodeficiency virus SIVmac nef gene. J Virol. 1991 Oct;65(10):5237–5243. doi: 10.1128/jvi.65.10.5237-5243.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bowen D. L., Lane H. C., Fauci A. S. Immunopathogenesis of the acquired immunodeficiency syndrome. Ann Intern Med. 1985 Nov;103(5):704–709. doi: 10.7326/0003-4819-103-5-704. [DOI] [PubMed] [Google Scholar]
  4. Breen E. C., Rezai A. R., Nakajima K., Beall G. N., Mitsuyasu R. T., Hirano T., Kishimoto T., Martinez-Maza O. Infection with HIV is associated with elevated IL-6 levels and production. J Immunol. 1990 Jan 15;144(2):480–484. [PubMed] [Google Scholar]
  5. Elsbach P. Degradation of microorganisms by phagocytic cells. Rev Infect Dis. 1980 Jan-Feb;2(1):106–128. doi: 10.1093/clinids/2.1.106. [DOI] [PubMed] [Google Scholar]
  6. Ennen J., Ernst M., Flad H. D. The effect of interleukin 2 on Fc-gamma receptor function of human monocytes requires specific intercellular interaction. Immunobiology. 1989 Mar;179(1):17–32. doi: 10.1016/s0171-2985(89)80004-x. [DOI] [PubMed] [Google Scholar]
  7. Ennen J., Seipp I., Norley S. G., Kurth R. Decreased accessory cell function of macrophages after infection with human immunodeficiency virus type 1 in vitro. Eur J Immunol. 1990 Nov;20(11):2451–2456. doi: 10.1002/eji.1830201114. [DOI] [PubMed] [Google Scholar]
  8. Fauci A. S. The human immunodeficiency virus: infectivity and mechanisms of pathogenesis. Science. 1988 Feb 5;239(4840):617–622. doi: 10.1126/science.3277274. [DOI] [PubMed] [Google Scholar]
  9. Finbloom D. S., Hoover D. L., Meltzer M. S. Binding of recombinant HIV coat protein gp120 to human monocytes. J Immunol. 1991 Feb 15;146(4):1316–1321. [PubMed] [Google Scholar]
  10. Gartner S., Markovits P., Markovitz D. M., Betts R. F., Popovic M. Virus isolation from and identification of HTLV-III/LAV-producing cells in brain tissue from a patient with AIDS. JAMA. 1986 Nov 7;256(17):2365–2371. [PubMed] [Google Scholar]
  11. Hammer S. M., Gillis J. M., Groopman J. E., Rose R. M. In vitro modification of human immunodeficiency virus infection by granulocyte-macrophage colony-stimulating factor and gamma interferon. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8734–8738. doi: 10.1073/pnas.83.22.8734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hartung S., Boller K., Cichutek K., Norley S. G., Kurth R. Quantitation of a lentivirus in its natural host: simian immunodeficiency virus in African green monkeys. J Virol. 1992 Apr;66(4):2143–2149. doi: 10.1128/jvi.66.4.2143-2149.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ho D. D., Rota T. R., Hirsch M. S. Infection of monocyte/macrophages by human T lymphotropic virus type III. J Clin Invest. 1986 May;77(5):1712–1715. doi: 10.1172/JCI112491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kahl R. Synthetic antioxidants: biochemical actions and interference with radiation, toxic compounds, chemical mutagens and chemical carcinogens. Toxicology. 1984 Dec;33(3-4):185–228. doi: 10.1016/0300-483x(84)90038-6. [DOI] [PubMed] [Google Scholar]
  15. Kazazi F., Mathijs J. M., Foley P., Cunningham A. L. Variations in CD4 expression by human monocytes and macrophages and their relationships to infection with the human immunodeficiency virus. J Gen Virol. 1989 Oct;70(Pt 10):2661–2672. doi: 10.1099/0022-1317-70-10-2661. [DOI] [PubMed] [Google Scholar]
  16. Kornbluth R. S., Oh P. S., Munis J. R., Cleveland P. H., Richman D. D. Interferons and bacterial lipopolysaccharide protect macrophages from productive infection by human immunodeficiency virus in vitro. J Exp Med. 1989 Mar 1;169(3):1137–1151. doi: 10.1084/jem.169.3.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lane H. C., Depper J. M., Greene W. C., Whalen G., Waldmann T. A., Fauci A. S. Qualitative analysis of immune function in patients with the acquired immunodeficiency syndrome. Evidence for a selective defect in soluble antigen recognition. N Engl J Med. 1985 Jul 11;313(2):79–84. doi: 10.1056/NEJM198507113130204. [DOI] [PubMed] [Google Scholar]
  18. Mihm S., Ennen J., Pessara U., Kurth R., Dröge W. Inhibition of HIV-1 replication and NF-kappa B activity by cysteine and cysteine derivatives. AIDS. 1991 May;5(5):497–503. doi: 10.1097/00002030-199105000-00004. [DOI] [PubMed] [Google Scholar]
  19. Molina J. M., Scadden D. T., Amirault C., Woon A., Vannier E., Dinarello C. A., Groopman J. E. Human immunodeficiency virus does not induce interleukin-1, interleukin-6, or tumor necrosis factor in mononuclear cells. J Virol. 1990 Jun;64(6):2901–2906. doi: 10.1128/jvi.64.6.2901-2906.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Murray H. W., Cohn Z. A. Macrophage oxygen-dependent antimicrobial activity. III. Enhanced oxidative metabolism as an expression of macrophage activation. J Exp Med. 1980 Dec 1;152(6):1596–1609. doi: 10.1084/jem.152.6.1596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Murray H. W., Juangbhanich C. W., Nathan C. F., Cohn Z. A. Macrophage oxygen-dependent antimicrobial activity. II. The role of oxygen intermediates. J Exp Med. 1979 Oct 1;150(4):950–964. doi: 10.1084/jem.150.4.950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nathan C. F., Murray H. W., Wiebe M. E., Rubin B. Y. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med. 1983 Sep 1;158(3):670–689. doi: 10.1084/jem.158.3.670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nathan C. F., Prendergast T. J., Wiebe M. E., Stanley E. R., Platzer E., Remold H. G., Welte K., Rubin B. Y., Murray H. W. Activation of human macrophages. Comparison of other cytokines with interferon-gamma. J Exp Med. 1984 Aug 1;160(2):600–605. doi: 10.1084/jem.160.2.600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nathan C., Nogueira N., Juangbhanich C., Ellis J., Cohn Z. Activation of macrophages in vivo and in vitro. Correlation between hydrogen peroxide release and killing of Trypanosoma cruzi. J Exp Med. 1979 May 1;149(5):1056–1068. doi: 10.1084/jem.149.5.1056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nicholson J. K., Cross G. D., Callaway C. S., McDougal J. S. In vitro infection of human monocytes with human T lymphotropic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV). J Immunol. 1986 Jul 1;137(1):323–329. [PubMed] [Google Scholar]
  26. Ohno Y., Gallin J. I. Diffusion of extracellular hydrogen peroxide into intracellular compartments of human neutrophils. Studies utilizing the inactivation of myeloperoxidase by hydrogen peroxide and azide. J Biol Chem. 1985 Jul 15;260(14):8438–8446. [PubMed] [Google Scholar]
  27. Pabst M. J., Hedegaard H. B., Johnston R. B., Jr Cultured human monocytes require exposure to bacterial products to maintain an optimal oxygen radical response. J Immunol. 1982 Jan;128(1):123–128. [PubMed] [Google Scholar]
  28. Pabst M. J., Johnston R. B., Jr Increased production of superoxide anion by macrophages exposed in vitro to muramyl dipeptide or lipopolysaccharide. J Exp Med. 1980 Jan 1;151(1):101–114. doi: 10.1084/jem.151.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Perno C. F., Baseler M. W., Broder S., Yarchoan R. Infection of monocytes by human immunodeficiency virus type 1 blocked by inhibitors of CD4-gp120 binding, even in the presence of enhancing antibodies. J Exp Med. 1990 Apr 1;171(4):1043–1056. doi: 10.1084/jem.171.4.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rellstab P., Schaffner A. Endotoxin suppresses the generation of O2- and H2O2 by "resting" and lymphokine-activated human blood-derived macrophages. J Immunol. 1989 Apr 15;142(8):2813–2820. [PubMed] [Google Scholar]
  31. Schultz R. M., Kleinschmidt W. J. Functional identity between murine gamma interferon and macrophage activating factor. Nature. 1983 Sep 15;305(5931):239–240. doi: 10.1038/305239a0. [DOI] [PubMed] [Google Scholar]
  32. Wahl L. M., Corcoran M. L., Pyle S. W., Arthur L. O., Harel-Bellan A., Farrar W. L. Human immunodeficiency virus glycoprotein (gp120) induction of monocyte arachidonic acid metabolites and interleukin 1. Proc Natl Acad Sci U S A. 1989 Jan;86(2):621–625. doi: 10.1073/pnas.86.2.621. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES