Skip to main content
Immunology logoLink to Immunology
. 1993 Feb;78(2):237–243.

The relation between T-cell expression of LFA-1 and immunological memory.

L Hviid 1, N Odum 1, T G Theander 1
PMCID: PMC1421809  PMID: 8097182

Abstract

Antibodies against isotypes of the leucocyte common antigen (LCA, CD45) can be used to identify largely reciprocal subsets of human peripheral T cells, characterized by differential ability to respond to recall antigen in vitro. The transition from naive, unprimed T cells to memory cells capable of responding to recall stimulating has been associated with a switch in surface expression of CD45 from the CD45RA isotype to CD45RO. It has been proposed that this transition is accompanied by the coordinated up-regulation of a number of cell-surface molecules involved in cellular adhesion and/or activation, including the leucocyte function-associated antigens (LFA). In the present study we have examined the expression of LFA-1 on subsets of human peripheral T cells, and related it to the expression of markers of cellular activation and CD45 isotypes, and thus to immunological memory. Our results suggest that the intensity of LFA-1 expression on the surface membrane of human peripheral T cells is not tightly associated with maturation status as judged by LCA isotype expression, but rather reflects the degree of cellular activation. This conclusion is supported by data of T-cell function in vitro, showing similar antigen- and mitogen-induced proliferative responses in T-cell subsets characterized by low as well as high surface expression of LFA-1.

Full text

PDF
237

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akbar A. N., Terry L., Timms A., Beverley P. C., Janossy G. Loss of CD45R and gain of UCHL1 reactivity is a feature of primed T cells. J Immunol. 1988 Apr 1;140(7):2171–2178. [PubMed] [Google Scholar]
  2. Bell E. B., Sparshott S. M. Interconversion of CD45R subsets of CD4 T cells in vivo. Nature. 1990 Nov 8;348(6297):163–166. doi: 10.1038/348163a0. [DOI] [PubMed] [Google Scholar]
  3. Beverley P. C. Is T-cell memory maintained by crossreactive stimulation? Immunol Today. 1990 Jun;11(6):203–205. doi: 10.1016/0167-5699(90)90083-l. [DOI] [PubMed] [Google Scholar]
  4. Buckle A. M., Hogg N. Human memory T cells express intercellular adhesion molecule-1 which can be increased by interleukin 2 and interferon-gamma. Eur J Immunol. 1990 Feb;20(2):337–341. doi: 10.1002/eji.1830200216. [DOI] [PubMed] [Google Scholar]
  5. Clement L. T., Vink P. E., Bradley G. E. Novel immunoregulatory functions of phenotypically distinct subpopulations of CD4+ cells in the human neonate. J Immunol. 1990 Jul 1;145(1):102–108. [PubMed] [Google Scholar]
  6. Desroches C. V., Andréoni C., Rigal D. Differential expression of the LFA-1 molecule on the human peripheral blood mononuclear cell subpopulations. Immunol Lett. 1990 Mar-Apr;24(1):13–20. doi: 10.1016/0165-2478(90)90030-t. [DOI] [PubMed] [Google Scholar]
  7. Dianzani U., Redoglia V., Malavasi F., Bragardo M., Pileri A., Janeway C. A., Jr, Bottomly K. Isoform-specific associations of CD45 with accessory molecules in human T lymphocytes. Eur J Immunol. 1992 Feb;22(2):365–371. doi: 10.1002/eji.1830220212. [DOI] [PubMed] [Google Scholar]
  8. Hviid L., Theander T. G., Abdulhadi N. H., Abu-Zeid Y. A., Bayoumi R. A., Jensen J. B. Transient depletion of T cells with high LFA-1 expression from peripheral circulation during acute Plasmodium falciparum malaria. Eur J Immunol. 1991 May;21(5):1249–1253. doi: 10.1002/eji.1830210523. [DOI] [PubMed] [Google Scholar]
  9. Merkenschlager M., Beverley P. C. Evidence for differential expression of CD45 isoforms by precursors for memory-dependent and independent cytotoxic responses: human CD8 memory CTLp selectively express CD45RO (UCHL1). Int Immunol. 1989;1(4):450–459. doi: 10.1093/intimm/1.4.450. [DOI] [PubMed] [Google Scholar]
  10. Pardi R., Bender J. R., Dettori C., Giannazza E., Engleman E. G. Heterogeneous distribution and transmembrane signaling properties of lymphocyte function-associated antigen (LFA-1) in human lymphocyte subsets. J Immunol. 1989 Nov 15;143(10):3157–3166. [PubMed] [Google Scholar]
  11. Sanders M. E., Makgoba M. W., Sharrow S. O., Stephany D., Springer T. A., Young H. A., Shaw S. Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2, and LFA-1) and three other molecules (UCHL1, CDw29, and Pgp-1) and have enhanced IFN-gamma production. J Immunol. 1988 Mar 1;140(5):1401–1407. [PubMed] [Google Scholar]
  12. Sanders M. E., Makgoba M. W., Shaw S. Human naive and memory T cells: reinterpretation of helper-inducer and suppressor-inducer subsets. Immunol Today. 1988 Jul-Aug;9(7-8):195–199. doi: 10.1016/0167-5699(88)91212-1. [DOI] [PubMed] [Google Scholar]
  13. Springer T. A. Adhesion receptors of the immune system. Nature. 1990 Aug 2;346(6283):425–434. doi: 10.1038/346425a0. [DOI] [PubMed] [Google Scholar]
  14. Springer T. A., Thompson W. S., Miller L. J., Schmalstieg F. C., Anderson D. C. Inherited deficiency of the Mac-1, LFA-1, p150,95 glycoprotein family and its molecular basis. J Exp Med. 1984 Dec 1;160(6):1901–1918. doi: 10.1084/jem.160.6.1901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Vermot Desroches C., Rigal D., Andréoni C. Regulation and functional involvement of distinct determinants of leucocyte function-associated antigen 1 (LFA-1) in T-cell activation in vitro. Scand J Immunol. 1991 Mar;33(3):277–286. doi: 10.1111/j.1365-3083.1991.tb01773.x. [DOI] [PubMed] [Google Scholar]
  16. Wallace D. L., Beverley P. C. Phenotypic changes associated with activation of CD45RA+ and CD45RO+ T cells. Immunology. 1990 Mar;69(3):460–467. [PMC free article] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES