Skip to main content
Immunology logoLink to Immunology
. 1993 Jun;79(2):290–297.

Renal allograft rejection: protection of renal epithelium from natural killer cells by cytokine-induced up-regulation of class I major histocompatibility antigens.

Y Lin 1, G Proud 1, R M Taylor 1, J A Kirby 1
PMCID: PMC1421859  PMID: 8344707

Abstract

The potential of natural killer (NK) cells to contribute to renal allograft rejection was modelled by mixing NK cells with cultured renal epithelial cells. It was found that the renal cells were readily lysed by cytokine-activated NK cells. Renal cells which were previously stimulated by culture with either interferon-gamma (IFN-gamma) or supernatant from mixed leucocyte cultures (MLC) were relatively resistant to such lysis; stimulation with tumour necrosis factor-alpha (TNF-alpha) had no effect. None of these cytokine preparations had any effect on the lysis of renal cells by either specific cytotoxic T lymphocytes or the antibody-dependent cell-mediated cytotoxic mechanism. The expression of class I major histocompatibility complex (MHC) antigens was up-regulated by stimulation of renal cells with either IFN-gamma or MLC supernatant; treatment with TNF-alpha had no effect on the expression of these antigens. Protection from NK cell-mediated lysis appeared to correlate with the expression of class I MHC antigens by the renal cells. Artificial removal of these MHC antigens by treatment with citric acid significantly increased the susceptibility of cytokine-stimulated renal cells to lysis by activated NK cells. This increase was not caused by enhanced binding of NK cells to acid-treated renal cell targets. These results suggest that high levels of class I MHC antigen expression block NK cell triggering after engagement with renal epithelial cells. It is concluded that cytokines present within the renal microenvironment during rejection protect graft cells from lysis by NK cells by causing local upregulation of the expression of class I MHC molecules.

Full text

PDF
290

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bishop G. A., Hall B. M. Expression of leucocyte and lymphocyte adhesion molecules in the human kidney. Kidney Int. 1989 Dec;36(6):1078–1085. doi: 10.1038/ki.1989.303. [DOI] [PubMed] [Google Scholar]
  2. Bishop G. A., Hall B. M., Suranyi M. G., Tiller D. J., Horvath J. S., Duggin G. G. Expression of HLA antigens on renal tubular cells in culture. I. Evidence that mixed lymphocyte culture supernatants and gamma interferon increase both class I and class II HLA antigens. Transplantation. 1986 Dec;42(6):671–679. doi: 10.1097/00007890-198612000-00018. [DOI] [PubMed] [Google Scholar]
  3. Bishop G. A., Waugh J. A., Hall B. M. Expression of HLA antigens on renal tubular cells in culture. II. Effect of increased HLA antigen expression on tubular cell stimulation of lymphocyte activation and on their vulnerability to cell-mediated lysis. Transplantation. 1988 Aug;46(2):303–310. doi: 10.1097/00007890-198808000-00022. [DOI] [PubMed] [Google Scholar]
  4. Blancho G., Buzelin F., Dantal J., Hourmant M., Cantarovich D., Baatard R., Bonneville M., Vie H., Bugeon L., Soulillou J. P. Evidence that early acute renal failure may be mediated by CD3- CD16+ cells in a kidney graft recipient with large granular lymphocyte proliferation. Transplantation. 1992 Jun;53(6):1242–1247. doi: 10.1097/00007890-199206000-00014. [DOI] [PubMed] [Google Scholar]
  5. Brunner K. T., MacDonald H. R., Cerottini J. C. Quantitation and clonal isolation of cytolytic T lymphocyte precursors selectively infiltrating murine sarcoma virus-induced tumors. J Exp Med. 1981 Aug 1;154(2):362–373. doi: 10.1084/jem.154.2.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Böyum A. A one-stage procedure for isolation of granulocytes and lymphocytes from human blood. General sedimentation properties of white blood cells in a 1g gravity field. Scand J Clin Lab Invest Suppl. 1968;97:51–76. [PubMed] [Google Scholar]
  7. Doveren R. F., Buurman W. A., van der Linden C. J., Strijbosch L. W., Spronken E. E., Kootstra G. Analysis of cytotoxic T lymphocyte response in rejecting allografted canine kidneys. Transplantation. 1986 Jan;41(1):33–38. doi: 10.1097/00007890-198601000-00006. [DOI] [PubMed] [Google Scholar]
  8. Faull R. J., Russ G. R. Tubular expression of intercellular adhesion molecule-1 during renal allograft rejection. Transplantation. 1989 Aug;48(2):226–230. doi: 10.1097/00007890-198908000-00009. [DOI] [PubMed] [Google Scholar]
  9. Franke W. W., Weber K., Osborn M., Schmid E., Freudenstein C. Antibody to prekeratin. Decoration of tonofilament like arrays in various cells of epithelial character. Exp Cell Res. 1978 Oct 15;116(2):429–445. doi: 10.1016/0014-4827(78)90466-4. [DOI] [PubMed] [Google Scholar]
  10. Grönberg A., Ferm M. T., Ng J., Reynolds C. W., Ortaldo J. R. IFN-gamma treatment of K562 cells inhibits natural killer cell triggering and decreases the susceptibility to lysis by cytoplasmic granules from large granular lymphocytes. J Immunol. 1988 Jun 15;140(12):4397–4402. [PubMed] [Google Scholar]
  11. Hall B. M., Bishop G. A., Duggin G. G., Horvath J. S., Philips J., Tiller D. J. Increased expression of HLA-DR antigens on renal tubular cells in renal transplants: relevance to the rejection response. Lancet. 1984 Aug 4;2(8397):247–251. doi: 10.1016/s0140-6736(84)90297-6. [DOI] [PubMed] [Google Scholar]
  12. Hall B. M. Cells mediating allograft rejection. Transplantation. 1991 Jun;51(6):1141–1151. doi: 10.1097/00007890-199106000-00001. [DOI] [PubMed] [Google Scholar]
  13. Herberman R. B., Reynolds C. W., Ortaldo J. R. Mechanism of cytotoxicity by natural killer (NK) cells. Annu Rev Immunol. 1986;4:651–680. doi: 10.1146/annurev.iy.04.040186.003251. [DOI] [PubMed] [Google Scholar]
  14. Häyry P., von Willebrand E. The influence of the pattern of inflammation and administration of steroids on class II MHC antigen expression in renal transplants. Transplantation. 1986 Oct;42(4):358–363. doi: 10.1097/00007890-198610000-00005. [DOI] [PubMed] [Google Scholar]
  15. Ikuta S., Kirby J. A., Shenton B. K., Givan A. L., Lennard T. W. Human endothelial cells: effect of TNF-alpha on peripheral blood mononuclear cell adhesion. Immunology. 1991 May;73(1):71–76. [PMC free article] [PubMed] [Google Scholar]
  16. Ishikura H., Takahashi C., Kanagawa K., Hirata H., Imai K., Yoshiki T. Cytokine regulation of ICAM-1 expression on human renal tubular epithelial cells in vitro. Transplantation. 1991 Jun;51(6):1272–1275. doi: 10.1097/00007890-199106000-00024. [DOI] [PubMed] [Google Scholar]
  17. Kirby J. A., Forsythe J. L., Proud G., Taylor R. M. Renal allograft rejection: possible involvement of lymphokine-activated killer cells. Immunology. 1989 May;67(1):62–67. [PMC free article] [PubMed] [Google Scholar]
  18. Kirby J. A., Forsythe J. L., Simm A., Proud G., Taylor R. M. Renal allograft rejection: protection of renal tubular epithelial cells from lymphokine activated killer cell mediated lysis by pretreatment with cytokines. Nephrol Dial Transplant. 1989;4(9):824–828. [PubMed] [Google Scholar]
  19. Kirby J. A., Givan A. L., Shenton B. K., Talbot D., Forsythe J. L., Lennard T. W., Proud G., Taylor R. M. Renal allograft rejection. Possible involvement of antibody-dependent cell-mediated cytotoxicity. Transplantation. 1990 Aug;50(2):225–229. doi: 10.1097/00007890-199008000-00010. [DOI] [PubMed] [Google Scholar]
  20. Kirby J. A., Ikuta S., Clark K., Proud G., Lennard T. W., Taylor R. M. Renal allograft rejection: investigation of alloantigen presentation by cultured human renal epithelial cells. Immunology. 1991 Mar;72(3):411–417. [PMC free article] [PubMed] [Google Scholar]
  21. Kirby J. A., Morgan J. C., Shenton B. K., Lennard T. W., Proud G., Taylor R. M. Renal allograft rejection. Functional impairment of kidney epithelial cell monolayers mediated by lymphokine-activated killer cells and by antibody. Transplantation. 1991 Apr;51(4):891–895. [PubMed] [Google Scholar]
  22. Kirby J. A., Reader J. A., Parfett G. J., Pepper J. R. Rat heterotopic heart transplantation: quantification and analysis of cell mediated cytotoxicity. Clin Exp Immunol. 1988 Jan;71(1):113–119. [PMC free article] [PubMed] [Google Scholar]
  23. Lin Y., Kirby J. A., Browell D. A., Morley A. R., Shenton B. K., Proud G., Taylor R. M. Renal allograft rejection: expression and function of VCAM-1 on tubular epithelial cells. Clin Exp Immunol. 1993 Apr;92(1):145–151. doi: 10.1111/j.1365-2249.1993.tb05961.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lobo P. I., Spencer C. E. Use of anti-HLA antibodies to mask major histocompatibility complex gene products on tumor cells can enhance susceptibility of these cells to lysis by natural killer cells. J Clin Invest. 1989 Jan;83(1):278–287. doi: 10.1172/JCI113870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Miltenburg A. M., Meijer-Paape M. E., Daha M. R., Paul L. C. Lymphokine-activated killer cells lyse human renal cancer cell lines and cultured normal kidney cells. Immunology. 1988 Apr;63(4):729–731. [PMC free article] [PubMed] [Google Scholar]
  26. Moretta L., Ciccone E., Moretta A., Höglund P., Ohlén C., Kärre K. Allorecognition by NK cells: nonself or no self? Immunol Today. 1992 Aug;13(8):300–306. doi: 10.1016/0167-5699(92)90042-6. [DOI] [PubMed] [Google Scholar]
  27. Müllbacher A., King N. J. Target cell lysis by natural killer cells is influenced by beta 2-microglobulin expression. Scand J Immunol. 1989 Jul;30(1):21–29. doi: 10.1111/j.1365-3083.1989.tb01184.x. [DOI] [PubMed] [Google Scholar]
  28. Nemlander A., Saksela E., Häyry P. Are "natural killer" cells involved in allograft rejection? Eur J Immunol. 1983 Apr;13(4):348–350. doi: 10.1002/eji.1830130415. [DOI] [PubMed] [Google Scholar]
  29. Shimizu Y., DeMars R. Demonstration by class I gene transfer that reduced susceptibility of human cells to natural killer cell-mediated lysis is inversely correlated with HLA class I antigen expression. Eur J Immunol. 1989 Mar;19(3):447–451. doi: 10.1002/eji.1830190306. [DOI] [PubMed] [Google Scholar]
  30. Steinmuller D. Which T cells mediate allograft rejection? Transplantation. 1985 Sep;40(3):229–233. doi: 10.1097/00007890-198509000-00001. [DOI] [PubMed] [Google Scholar]
  31. Sugawara S., Abo T., Itoh H., Kumagai K. Analysis of mechanisms by which NK cells acquire increased cytotoxicity against class I MHC-eliminated targets. Cell Immunol. 1989 Apr 1;119(2):304–316. doi: 10.1016/0008-8749(89)90246-3. [DOI] [PubMed] [Google Scholar]
  32. Suranyi M. G., Bishop G. A., Clayberger C., Krensky A. M., Leenaerts P., Aversa G., Hall B. M. Lymphocyte adhesion molecules in T cell-mediated lysis of human kidney cells. Kidney Int. 1991 Feb;39(2):312–319. doi: 10.1038/ki.1991.39. [DOI] [PubMed] [Google Scholar]
  33. Uchiyama A., Morisaki T., Torisu M. Evidence that induction and regulation of lymphokine-activated killer (LAK) activity are mediated by changes in tumour-binding potential of lymphocytes after activation by interleukin-2 (IL-2). Immunology. 1991 Sep;74(1):94–98. [PMC free article] [PubMed] [Google Scholar]
  34. Versteeg R. NK cells and T cells: mirror images? Immunol Today. 1992 Jul;13(7):244–247. doi: 10.1016/0167-5699(92)90003-P. [DOI] [PubMed] [Google Scholar]
  35. Welsh R. M., Karre K., Hansson M., Kunkel L. A., Kiessling R. W. Interferon-mediated protection of normal and tumor target cells against lysis by mouse natural killer cells. J Immunol. 1981 Jan;126(1):219–225. [PubMed] [Google Scholar]
  36. Wright S. C., Bonavida B. Studies on the mechanism of natural killer cell-mediated cytotoxicity. IV. Interferon-induced inhibition of NK target cell susceptibility to lysis is due to a defect in their ability to stimulate release of natural killer cytotoxic factors (NKCF). J Immunol. 1983 Jun;130(6):2965–2968. [PubMed] [Google Scholar]
  37. Young J. D. Killing of target cells by lymphocytes: a mechanistic view. Physiol Rev. 1989 Jan;69(1):250–314. doi: 10.1152/physrev.1989.69.1.250. [DOI] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES