Skip to main content
Immunology logoLink to Immunology
. 1993 Apr;78(4):616–622.

Recovery from chemically induced thymus atrophy starts with CD4- CD8- CD2high TcR alpha beta-/low thymocytes and results in an increased formation of CD4- CD8- TcR alpha beta high thymocytes.

R H Pieters 1, M Bol 1, B W Lam 1, W Seinen 1, N Bloksma 1, A H Penninks 1
PMCID: PMC1421885  PMID: 8098700

Abstract

Regeneration of the thymus was studied in rats that were treated with a single oral dose of the organotin compound di-n-butyltin dichloride (DBTC). After an initial maximum depletion of cortical BrdU+ thymocytes on day 2 after treatment, repopulation appeared to start on day 3 as indicated by an increased number of BrdU+ cells in the subcapsular region. On day 5, when thymocyte depletion was most pronounced, a relative increase of BrdU+ cells was observed all over the cortex. In comparison with controls, the thymoblast population on day 5 appeared to harbour increased numbers of CD4- CD8- and immature CD4- CD8+ CD53- thymoblasts, while the number of CD4+ CD8+ blasts had decreased. In comparison with day 3, however, the number of CD4+ CD8+ blasts had increased again. Results together have been interpreted as indicative for thymus regeneration starting from CD4- CD8- blasts which differentiate to immature CD4- CD8+ and then to CD4+ CD8+ blasts. Further characterization revealed that the majority of the CD4- CD8- and CD4- CD8+ CD53- blasts expressed high levels of CD2 and no or low levels of T-cell receptor (TcR) alpha beta. The high expression of CD2 on repopulating thymoblasts may be an additional indication of their activated state and for a role of interaction with the ligand LFA-3 on thymic epithelial cells during this phase of thymocyte differentiation. The number of CD4- CD8- TcR alpha beta high cells was increased on day 5 after dosing. The origin of this population and the possible implication of its development during thymus regeneration after chemically induced thymus atrophy are discussed.

Full text

PDF
616

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angelisová P., Vlcek C., Stefanová I., Lipoldová M., Horejsí V. The human leucocyte surface antigen CD53 is a protein structurally similar to the CD37 and MRC OX-44 antigens. Immunogenetics. 1990;32(4):281–285. doi: 10.1007/BF00187099. [DOI] [PubMed] [Google Scholar]
  2. Aspinall R., Kampinga J., van den Bogaerde J. T-cell development in the fetus and the invariant series hypothesis. Immunol Today. 1991 Jan;12(1):7–10. doi: 10.1016/0167-5699(91)90105-3. [DOI] [PubMed] [Google Scholar]
  3. Beyers A. D., Barclay A. N., Law D. A., He Q., Williams A. F. Activation of T lymphocytes via monoclonal antibodies against rat cell surface antigens with particular reference to CD2 antigen. Immunol Rev. 1989 Oct;111:59–77. doi: 10.1111/j.1600-065x.1989.tb00542.x. [DOI] [PubMed] [Google Scholar]
  4. Brideau R. J., Carter P. B., McMaster W. R., Mason D. W., Williams A. F. Two subsets of rat T lymphocytes defined with monoclonal antibodies. Eur J Immunol. 1980 Aug;10(8):609–615. doi: 10.1002/eji.1830100807. [DOI] [PubMed] [Google Scholar]
  5. Clark S. J., Law D. A., Paterson D. J., Puklavec M., Williams A. F. Activation of rat T lymphocytes by anti-CD2 monoclonal antibodies. J Exp Med. 1988 Jun 1;167(6):1861–1872. doi: 10.1084/jem.167.6.1861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Egerton M., Scollay R. Intrathymic selection of murine TCR alpha beta+CD4-CD8- thymocytes. Int Immunol. 1990;2(2):157–163. doi: 10.1093/intimm/2.2.157. [DOI] [PubMed] [Google Scholar]
  7. Joling P., Tielen F. J., Vaessen L. M., Hesse C. J., Rozing J. Intrathymic differentiation in the rat. Adv Exp Med Biol. 1985;186:235–244. doi: 10.1007/978-1-4613-2463-8_29. [DOI] [PubMed] [Google Scholar]
  8. Kyewski B. A., Jenkinson E. J., Kingston R., Altevogt P., Owen M. J., Owen J. J. The effects of anti-CD2 antibodies on the differentiation of mouse thymocytes. Eur J Immunol. 1989 May;19(5):951–954. doi: 10.1002/eji.1830190526. [DOI] [PubMed] [Google Scholar]
  9. Paterson D. J., Green J. R., Jefferies W. A., Puklavec M., Williams A. F. The MRC OX-44 antigen marks a functionally relevant subset among rat thymocytes. J Exp Med. 1987 Jan 1;165(1):1–13. doi: 10.1084/jem.165.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Paterson D. J., Williams A. F. An intermediate cell in thymocyte differentiation that expresses CD8 but not CD4 antigen. J Exp Med. 1987 Nov 1;166(5):1603–1608. doi: 10.1084/jem.166.5.1603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Penit C. In vivo thymocyte maturation. BUdR labeling of cycling thymocytes and phenotypic analysis of their progeny support the single lineage model. J Immunol. 1986 Oct 1;137(7):2115–2121. [PubMed] [Google Scholar]
  12. Penit C., Vasseur F. Sequential events in thymocyte differentiation and thymus regeneration revealed by a combination of bromodeoxyuridine DNA labeling and antimitotic drug treatment. J Immunol. 1988 May 15;140(10):3315–3323. [PubMed] [Google Scholar]
  13. Pieters R. H., Bol M., Lam B. W., Seinen W., Penninks A. H. The organotin-induced thymus atrophy, characterized by depletion of CD4+ CD8+ thymocytes, is preceded by a reduction of the immature CD4- CD8+ TcR alpha beta-/low CD2high thymoblast subset. Immunology. 1992 Jun;76(2):203–208. [PMC free article] [PubMed] [Google Scholar]
  14. Pieters R. H., Kampinga J., Bol-Schoenmakers M., Lam B. W., Penninks A. H., Seinen W. Organotin-induced thymus atrophy concerns the OX-44+ immature thymocytes. Relation to the interaction between early thymocytes and thymic epithelial cells? Thymus. 1989;14(1-3):79–88. [PubMed] [Google Scholar]
  15. Reimann J. Double-negative (CD4-CD8-), TCR alpha beta-expressing, peripheral T cells. Scand J Immunol. 1991 Dec;34(6):679–688. doi: 10.1111/j.1365-3083.1991.tb01592.x. [DOI] [PubMed] [Google Scholar]
  16. Schutte B., Reynders M. M., van Assche C. L., Hupperets P. S., Bosman F. T., Blijham G. H. An improved method for the immunocytochemical detection of bromodeoxyuridine labeled nuclei using flow cytometry. Cytometry. 1987 Jul;8(4):372–376. doi: 10.1002/cyto.990080405. [DOI] [PubMed] [Google Scholar]
  17. Seinen W., Vos J. G., Brands R., Hooykaas H. Lymphocytotoxicity and immunosuppression by organotin compounds. Suppression of graft-versus-host reactivity, blast transformation, and E-rosette formation by di-n-butyltindichloride and di-n-octyltindichloride. Immunopharmacology. 1979 Jul;1(4):343–355. doi: 10.1016/0162-3109(79)90031-6. [DOI] [PubMed] [Google Scholar]
  18. Seinen W., Vos J. G., van Krieken R., Penninks A., Brands R., Hooykaas H. Toxicity of organotin compounds. III. Suppression of thymus-dependent immunity in rats by di-n-butyltindichloride and di-n-octyltindichloride. Toxicol Appl Pharmacol. 1977 Oct;42(1):213–224. doi: 10.1016/0041-008x(77)90211-3. [DOI] [PubMed] [Google Scholar]
  19. Seinen W., Willems M. I. Toxicity of organotin compounds. I. Atrophy of thymus and thymus-dependent lymphoid tissue in rats fed di-n-octyltindichloride. Toxicol Appl Pharmacol. 1976 Jan;35(1):63–75. doi: 10.1016/0041-008x(76)90111-3. [DOI] [PubMed] [Google Scholar]
  20. Singer P. A., Theofilopoulos A. N. T-cell receptor V beta repertoire expression in murine models of SLE. Immunol Rev. 1990 Dec;118:103–127. doi: 10.1111/j.1600-065x.1990.tb00814.x. [DOI] [PubMed] [Google Scholar]
  21. Snoeij N. J., Penninks A. H., Seinen W. Biological activity of organotin compounds--an overview. Environ Res. 1987 Dec;44(2):335–353. doi: 10.1016/s0013-9351(87)80242-6. [DOI] [PubMed] [Google Scholar]
  22. Snoeij N. J., Penninks A. H., Seinen W. Dibutyltin and tributyltin compounds induce thymus atrophy in rats due to a selective action on thymic lymphoblasts. Int J Immunopharmacol. 1988;10(7):891–899. doi: 10.1016/0192-0561(88)90014-8. [DOI] [PubMed] [Google Scholar]
  23. Springer T. A., Dustin M. L., Kishimoto T. K., Marlin S. D. The lymphocyte function-associated LFA-1, CD2, and LFA-3 molecules: cell adhesion receptors of the immune system. Annu Rev Immunol. 1987;5:223–252. doi: 10.1146/annurev.iy.05.040187.001255. [DOI] [PubMed] [Google Scholar]
  24. Takahama Y., Kosugi A., Singer A. Phenotype, ontogeny, and repertoire of CD4-CD8- T cell receptor alpha beta + thymocytes. Variable influence of self-antigens on T cell receptor V beta usage. J Immunol. 1991 Feb 15;146(4):1134–1141. [PubMed] [Google Scholar]
  25. Tiefenthaler G., Hanke T., Hünig T. Maturation of CD4-8- alpha/beta TCR+ T cells induced by CD2-stimulation in vivo and in vitro. Int Immunol. 1992 Jul;4(7):825–829. doi: 10.1093/intimm/4.7.825. [DOI] [PubMed] [Google Scholar]
  26. Williams A. F., Barclay A. N., Clark S. J., Paterson D. J., Willis A. C. Similarities in sequences and cellular expression between rat CD2 and CD4 antigens. J Exp Med. 1987 Feb 1;165(2):368–380. doi: 10.1084/jem.165.2.368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. von Boehmer H. The developmental biology of T lymphocytes. Annu Rev Immunol. 1988;6:309–326. doi: 10.1146/annurev.iy.06.040188.001521. [DOI] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES