Skip to main content
Immunology logoLink to Immunology
. 1993 Apr;78(4):643–649.

Intranasal immunization against herpes simplex virus infection by using a recombinant glycoprotein D fused with immunomodulating proteins, the B subunit of Escherichia coli heat-labile enterotoxin and interleukin-2.

M Hazama 1, A Mayumi-Aono 1, T Miyazaki 1, S Hinuma 1, Y Fujisawa 1
PMCID: PMC1421888  PMID: 8388365

Abstract

To establish a novel strategy of mucosal immunization against herpes simplex virus type 1 (HSV-1) infection, we studied the immune responses elicited by intranasal immunization with several forms of a recombinant glycoprotein D (gD) of HSV-1. A truncated gD (t-gD) co-administered with heat-labile enterotoxin B subunit (LTB) from Escherichia coli induced both a mucosal immune response involving secretion of anti-gD IgA and serum IgG production. The levels of these responses are comparable to those in mice which have recovered from intranasal HSV-1 infections. The fusion protein (t-gD-LTB), consisting of t-gD and LTB, induced the responses more efficiently than did co-administration of t-gD and LTB, although GM1 ganglioside binding activity was significantly reduced in t-gD-LTB. We found that another fusion protein, consisting of t-gD and human interleukin-2 (t-gD-IL-2), also elicited antibody responses comparable to those induced by t-gD-LTB. Immunity acquired by intranasal immunization with t-gD-IL-2 protected mice from intraperitoneal HSV-1 infections, whereas t-gD-LTB or t-gD alone failed to provide protection against infection. Even in a mouse strain that responded highly to subcutaneously administered gD, intranasally administered t-gD did not elicit antibody responses. The lack of response to gD was clearly abrogated by co-administration with IL-2, and administration of t-gD-IL-2 induced an excellent level of antibody responses in this strain. These results suggest that the IL-2 fusion strategy yields a new type of mucosal immunization, the mechanism of which differs from that speculated for the mucosal adjuvant activity of LTB.

Full text

PDF
643

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clements J. D., Finkelstein R. A. Isolation and characterization of homogeneous heat-labile enterotoxins with high specific activity from Escherichia coli cultures. Infect Immun. 1979 Jun;24(3):760–769. doi: 10.1128/iai.24.3.760-769.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Clements J. D., Flint D. C., Engert R. F., Klipstein F. A. Cloning and molecular characterization of the B subunit of Escherichia coli heat-labile enterotoxin. Infect Immun. 1983 May;40(2):653–658. doi: 10.1128/iai.40.2.653-658.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clements J. D., Hartzog N. M., Lyon F. L. Adjuvant activity of Escherichia coli heat-labile enterotoxin and effect on the induction of oral tolerance in mice to unrelated protein antigens. Vaccine. 1988 Jun;6(3):269–277. doi: 10.1016/0264-410x(88)90223-x. [DOI] [PubMed] [Google Scholar]
  4. Clements J. D., Yancey R. J., Finkelstein R. A. Properties of homogeneous heat-labile enterotoxin from Escherichia coli. Infect Immun. 1980 Jul;29(1):91–97. doi: 10.1128/iai.29.1.91-97.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Douglas R. G., Jr, Couch R. B. A prospective study of chronic herpes simplex virus infection and recurrent herpes labialis in humans. J Immunol. 1970 Feb;104(2):289–295. [PubMed] [Google Scholar]
  6. Elson C. O., Ealding W. Cholera toxin feeding did not induce oral tolerance in mice and abrogated oral tolerance to an unrelated protein antigen. J Immunol. 1984 Dec;133(6):2892–2897. [PubMed] [Google Scholar]
  7. Elson C. O., Solomon S. Activation of cholera toxin-specific T cells in vitro. Infect Immun. 1990 Nov;58(11):3711–3716. doi: 10.1128/iai.58.11.3711-3716.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Flexner C., Hügin A., Moss B. Prevention of vaccinia virus infection in immunodeficient mice by vector-directed IL-2 expression. Nature. 1987 Nov 19;330(6145):259–262. doi: 10.1038/330259a0. [DOI] [PubMed] [Google Scholar]
  9. Francis M. L., Ryan J., Jobling M. G., Holmes R. K., Moss J., Mond J. J. Cyclic AMP-independent effects of cholera toxin on B cell activation. II. Binding of ganglioside GM1 induces B cell activation. J Immunol. 1992 Apr 1;148(7):1999–2005. [PubMed] [Google Scholar]
  10. Good M. F., Pombo D., Lunde M. N., Maloy W. L., Halenbeck R., Koths K., Miller L. H., Berzofsky J. A. Recombinant human IL-2 overcomes genetic nonresponsiveness to malaria sporozoite peptides. Correlation of effect with biologic activity of IL-2. J Immunol. 1988 Aug 1;141(3):972–977. [PubMed] [Google Scholar]
  11. Hinuma S., Hazama M., Mayumi A., Fujisawa Y. A novel strategy for converting recombinant viral protein into high immunogenic antigen. FEBS Lett. 1991 Aug 19;288(1-2):138–142. doi: 10.1016/0014-5793(91)81020-9. [DOI] [PubMed] [Google Scholar]
  12. Kaplan G., Cohn Z. A., Smith K. A. Rational immunotherapy with interleukin 2. Biotechnology (N Y) 1992 Feb;10(2):157–162. doi: 10.1038/nbt0292-157. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Lipscombe M., Charles I. G., Roberts M., Dougan G., Tite J., Fairweather N. F. Intranasal immunization using the B subunit of the Escherichia coli heat-labile toxin fused to an epitope of the Bordetella pertussis P.69 antigen. Mol Microbiol. 1991 Jun;5(6):1385–1392. doi: 10.1111/j.1365-2958.1991.tb00785.x. [DOI] [PubMed] [Google Scholar]
  16. McKenzie S. J., Halsey J. F. Cholera toxin B subunit as a carrier protein to stimulate a mucosal immune response. J Immunol. 1984 Oct;133(4):1818–1824. [PubMed] [Google Scholar]
  17. Meuer S. C., Dumann H., Meyer zum Büschenfelde K. H., Köhler H. Low-dose interleukin-2 induces systemic immune responses against HBsAg in immunodeficient non-responders to hepatitis B vaccination. Lancet. 1989 Jan 7;1(8628):15–18. doi: 10.1016/s0140-6736(89)91674-7. [DOI] [PubMed] [Google Scholar]
  18. Nash A. A., Jayasuriya A., Phelan J., Cobbold S. P., Waldmann H., Prospero T. Different roles for L3T4+ and Lyt 2+ T cell subsets in the control of an acute herpes simplex virus infection of the skin and nervous system. J Gen Virol. 1987 Mar;68(Pt 3):825–833. doi: 10.1099/0022-1317-68-3-825. [DOI] [PubMed] [Google Scholar]
  19. Pierce N. F. The role of antigen form and function in the primary and secondary intestinal immune responses to cholera toxin and toxoid in rats. J Exp Med. 1978 Jul 1;148(1):195–206. doi: 10.1084/jem.148.1.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ramshaw I. A., Andrew M. E., Phillips S. M., Boyle D. B., Coupar B. E. Recovery of immunodeficient mice from a vaccinia virus/IL-2 recombinant infection. Nature. 1987 Oct 8;329(6139):545–546. doi: 10.1038/329545a0. [DOI] [PubMed] [Google Scholar]
  21. Rosenberg A. H., Lade B. N., Chui D. S., Lin S. W., Dunn J. J., Studier F. W. Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene. 1987;56(1):125–135. doi: 10.1016/0378-1119(87)90165-x. [DOI] [PubMed] [Google Scholar]
  22. Rouse B. T., Miller L. S., Turtinen L., Moore R. N. Augmentation of immunity to herpes simplex virus by in vivo administration of interleukin 2. J Immunol. 1985 Feb;134(2):926–930. [PubMed] [Google Scholar]
  23. Sasada R., Onda H., Igarashi K. The establishment of IL-2 producing cells by genetic engineering. Cell Struct Funct. 1987 Apr;12(2):205–217. doi: 10.1247/csf.12.205. [DOI] [PubMed] [Google Scholar]
  24. Sharom F. J., Chiu A. L., Chu J. W. Membrane gangliosides modulate interleukin-2-stimulated T-lymphocyte proliferation. Biochim Biophys Acta. 1991 Aug 13;1094(1):35–42. doi: 10.1016/0167-4889(91)90023-q. [DOI] [PubMed] [Google Scholar]
  25. Weinberg A., Konrad M., Merigan T. C. Regulation by recombinant interleukin-2 of protective immunity against recurrent herpes simplex virus type 2 genital infection in guinea pigs. J Virol. 1987 Jul;61(7):2120–2127. doi: 10.1128/jvi.61.7.2120-2127.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Weinberg A., Merigan T. C. Recombinant interleukin 2 as an adjuvant for vaccine-induced protection. Immunization of guinea pigs with herpes simplex virus subunit vaccines. J Immunol. 1988 Jan 1;140(1):294–299. [PubMed] [Google Scholar]
  27. Woogen S. D., Ealding W., Elson C. O. Inhibition of murine lymphocyte proliferation by the B subunit of cholera toxin. J Immunol. 1987 Dec 1;139(11):3764–3770. [PubMed] [Google Scholar]
  28. Yamamoto T., Yokota T., Kaji A. Molecular organization of heat-labile enterotoxin genes originating in Escherichia coli of human origin and construction of heat-labile toxoid-producing strains. J Bacteriol. 1981 Dec;148(3):983–987. doi: 10.1128/jb.148.3.983-987.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yamamoto T., Yokota T. Sequence of heat-labile enterotoxin of Escherichia coli pathogenic for humans. J Bacteriol. 1983 Aug;155(2):728–733. doi: 10.1128/jb.155.2.728-733.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES