Skip to main content
Immunology logoLink to Immunology
. 1993 Aug;79(4):608–615.

Interleukin-8 primes human neutrophils for enhanced superoxide anion production.

A Wozniak 1, W H Betts 1, G A Murphy 1, M Rokicinski 1
PMCID: PMC1421931  PMID: 8406585

Abstract

Interleukin-8 (IL-8), a novel chemotactic cytokine, has been shown to play an important role in inflammation. In this study, we investigated the effect of recombinant human (rh) IL-8 on superoxide (O2-) production by neutrophils. We found that rhIL-8 (1-10 ng/ml) did not stimulate neutrophil O2- production on its own, but primed neutrophils for an enhanced response to other stimuli, such as N-formyl-methionyl-leucyl-phenylalanine (FMLP), phorbol 12-myristate 13-acetate (PMA) and platelet-activating factor (PAF). The priming effect of rhIL-8 was dose dependent, rapid and long lasting. Recombinant human IL-8 increased both the maximal rate and the total O2- production, but did not prolong the response to FMLP. Stimulation of neutrophils with rhIL-8 increased intracellular-free calcium concentration ([Ca2+]i) by mobilizing calcium from internal stores and by increasing calcium influx. The increase in [Ca2+]i was dose dependent and occurred in the same range of rhIL-8 concentrations that primed neutrophils for O2- production. In addition, rhIL-8 enhanced the FMLP-stimulated increase in [Ca2+]i. These observations suggest that calcium may play an important role in priming phenomenon.

Full text

PDF
608

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abo A., Pick E., Hall A., Totty N., Teahan C. G., Segal A. W. Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature. 1991 Oct 17;353(6345):668–670. doi: 10.1038/353668a0. [DOI] [PubMed] [Google Scholar]
  2. Atkinson Y. H., Marasco W. A., Lopez A. F., Vadas M. A. Recombinant human tumor necrosis factor-alpha. Regulation of N-formylmethionylleucylphenylalanine receptor affinity and function on human neutrophils. J Clin Invest. 1988 Mar;81(3):759–765. doi: 10.1172/JCI113381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baggiolini M., Imboden P., Detmers P. Neutrophil activation and the effects of interleukin-8/neutrophil-activating peptide 1 (IL-8/NAP-1). Cytokines. 1992;4:1–17. [PubMed] [Google Scholar]
  4. Bauldry S. A., McCall C. E., Cousart S. L., Bass D. A. Tumor necrosis factor-alpha priming of phospholipase A2 activation in human neutrophils. An alternative mechanism of priming. J Immunol. 1991 Feb 15;146(4):1277–1285. [PubMed] [Google Scholar]
  5. Bell R. M., Burns D. J. Lipid activation of protein kinase C. J Biol Chem. 1991 Mar 15;266(8):4661–4664. [PubMed] [Google Scholar]
  6. Berkow R. L., Wang D., Larrick J. W., Dodson R. W., Howard T. H. Enhancement of neutrophil superoxide production by preincubation with recombinant human tumor necrosis factor. J Immunol. 1987 Dec 1;139(11):3783–3791. [PubMed] [Google Scholar]
  7. Bokoch G. M., Quilliam L. A., Bohl B. P., Jesaitis A. J., Quinn M. T. Inhibition of Rap1A binding to cytochrome b558 of NADPH oxidase by phosphorylation of Rap1A. Science. 1991 Dec 20;254(5039):1794–1796. doi: 10.1126/science.1763330. [DOI] [PubMed] [Google Scholar]
  8. Brennan F. M., Zachariae C. O., Chantry D., Larsen C. G., Turner M., Maini R. N., Matsushima K., Feldmann M. Detection of interleukin 8 biological activity in synovial fluids from patients with rheumatoid arthritis and production of interleukin 8 mRNA by isolated synovial cells. Eur J Immunol. 1990 Sep;20(9):2141–2144. doi: 10.1002/eji.1830200938. [DOI] [PubMed] [Google Scholar]
  9. Clark R. A., Volpp B. D., Leidal K. G., Nauseef W. M. Two cytosolic components of the human neutrophil respiratory burst oxidase translocate to the plasma membrane during cell activation. J Clin Invest. 1990 Mar;85(3):714–721. doi: 10.1172/JCI114496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dale M. M., Penfield A. Synergism between phorbol ester and A23187 in superoxide production by neutrophils. FEBS Lett. 1984 Sep 17;175(1):170–172. doi: 10.1016/0014-5793(84)80592-x. [DOI] [PubMed] [Google Scholar]
  11. Daniels R. H., Finnen M. J., Hill M. E., Lackie J. M. Recombinant human monocyte IL-8 primes NADPH-oxidase and phospholipase A2 activation in human neutrophils. Immunology. 1992 Jan;75(1):157–163. [PMC free article] [PubMed] [Google Scholar]
  12. Darbonne W. C., Rice G. C., Mohler M. A., Apple T., Hébert C. A., Valente A. J., Baker J. B. Red blood cells are a sink for interleukin 8, a leukocyte chemotaxin. J Clin Invest. 1991 Oct;88(4):1362–1369. doi: 10.1172/JCI115442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dewald B., Baggiolini M. Activation of NADPH oxidase in human neutrophils. Synergism between fMLP and the neutrophil products PAF and LTB4. Biochem Biophys Res Commun. 1985 Apr 16;128(1):297–304. doi: 10.1016/0006-291x(85)91678-x. [DOI] [PubMed] [Google Scholar]
  14. Djeu J. Y., Matsushima K., Oppenheim J. J., Shiotsuki K., Blanchard D. K. Functional activation of human neutrophils by recombinant monocyte-derived neutrophil chemotactic factor/IL-8. J Immunol. 1990 Mar 15;144(6):2205–2210. [PubMed] [Google Scholar]
  15. French J. K., Hurst N. P., Zalewski P. D., Valente L., Forbes I. J. Calcium ionophore A23187 enhances human neutrophil superoxide release, stimulated by phorbol dibutyrate, by converting phorbol ester receptors from a low- to high-affinity state. FEBS Lett. 1987 Feb 23;212(2):242–246. doi: 10.1016/0014-5793(87)81353-4. [DOI] [PubMed] [Google Scholar]
  16. Gallin J. I., Leto T. L., Rotrosen D., Kwong C. H., Malech H. L. Delineation of the phagocyte NADPH oxidase through studies of chronic granulomatous diseases of childhood. Curr Opin Immunol. 1992 Feb;4(1):53–56. doi: 10.1016/0952-7915(92)90124-w. [DOI] [PubMed] [Google Scholar]
  17. Huber A. R., Kunkel S. L., Todd R. F., 3rd, Weiss S. J. Regulation of transendothelial neutrophil migration by endogenous interleukin-8. Science. 1991 Oct 4;254(5028):99–102. doi: 10.1126/science.1718038. [DOI] [PubMed] [Google Scholar]
  18. Larsen C. G., Anderson A. O., Appella E., Oppenheim J. J., Matsushima K. The neutrophil-activating protein (NAP-1) is also chemotactic for T lymphocytes. Science. 1989 Mar 17;243(4897):1464–1466. doi: 10.1126/science.2648569. [DOI] [PubMed] [Google Scholar]
  19. Leonard E. J., Yoshimura T., Tanaka S., Raffeld M. Neutrophil recruitment by intradermally injected neutrophil attractant/activation protein-1. J Invest Dermatol. 1991 May;96(5):690–694. doi: 10.1111/1523-1747.ep12470612. [DOI] [PubMed] [Google Scholar]
  20. McColl S. R., Beauseigle D., Gilbert C., Naccache P. H. Priming of the human neutrophil respiratory burst by granulocyte-macrophage colony-stimulating factor and tumor necrosis factor-alpha involves regulation at a post-cell surface receptor level. Enhancement of the effect of agents which directly activate G proteins. J Immunol. 1990 Nov 1;145(9):3047–3053. [PubMed] [Google Scholar]
  21. Naccache P. H., Faucher N., Borgeat P., Gasson J. C., DiPersio J. F. Granulocyte-macrophage colony-stimulating factor modulates the excitation-response coupling sequence in human neutrophils. J Immunol. 1988 May 15;140(10):3541–3546. [PubMed] [Google Scholar]
  22. Nauseef W. M., Volpp B. D., McCormick S., Leidal K. G., Clark R. A. Assembly of the neutrophil respiratory burst oxidase. Protein kinase C promotes cytoskeletal and membrane association of cytosolic oxidase components. J Biol Chem. 1991 Mar 25;266(9):5911–5917. [PubMed] [Google Scholar]
  23. O'Flaherty J. T., Redman J. F., Jacobson D. P., Rossi A. G. Stimulation and priming of protein kinase C translocation by a Ca2+ transient-independent mechanism. Studies in human neutrophils challenged with platelet-activating factor and other receptor agonists. J Biol Chem. 1990 Dec 15;265(35):21619–21623. [PubMed] [Google Scholar]
  24. O'Flaherty J. T., Rossi A. G., Redman J. F., Jacobson D. P. Tumor necrosis factor-alpha regulates expression of receptors for formyl-methionyl-leucyl-phenylalanine, leukotriene B4, and platelet-activating factor. Dissociation from priming in human polymorphonuclear neutrophils. J Immunol. 1991 Dec 1;147(11):3842–3847. [PubMed] [Google Scholar]
  25. Peichl P., Ceska M., Broell H., Effenberger F., Lindley I. J. Human neutrophil activating peptide/interleukin 8 acts as an autoantigen in rheumatoid arthritis. Ann Rheum Dis. 1992 Jan;51(1):19–22. doi: 10.1136/ard.51.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Peichl P., Ceska M., Effenberger F., Haberhauer G., Broell H., Lindley I. J. Presence of NAP-1/IL-8 in synovial fluids indicates a possible pathogenic role in rheumatoid arthritis. Scand J Immunol. 1991 Sep;34(3):333–339. doi: 10.1111/j.1365-3083.1991.tb01554.x. [DOI] [PubMed] [Google Scholar]
  27. Rink T. J., Pozzan T. Using quin2 in cell suspensions. Cell Calcium. 1985 Apr;6(1-2):133–144. doi: 10.1016/0143-4160(85)90040-5. [DOI] [PubMed] [Google Scholar]
  28. Rotrosen D., Leto T. L. Phosphorylation of neutrophil 47-kDa cytosolic oxidase factor. Translocation to membrane is associated with distinct phosphorylation events. J Biol Chem. 1990 Nov 15;265(32):19910–19915. [PubMed] [Google Scholar]
  29. Seitz M., Dewald B., Gerber N., Baggiolini M. Enhanced production of neutrophil-activating peptide-1/interleukin-8 in rheumatoid arthritis. J Clin Invest. 1991 Feb;87(2):463–469. doi: 10.1172/JCI115018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Smith W. B., Gamble J. R., Clark-Lewis I., Vadas M. A. Interleukin-8 induces neutrophil transendothelial migration. Immunology. 1991 Jan;72(1):65–72. [PMC free article] [PubMed] [Google Scholar]
  31. Swensson O., Schubert C., Christophers E., Schröder J. M. Inflammatory properties of neutrophil-activating protein-1/interleukin 8 (NAP-1/IL-8) in human skin: a light- and electronmicroscopic study. J Invest Dermatol. 1991 May;96(5):682–689. doi: 10.1111/1523-1747.ep12470606. [DOI] [PubMed] [Google Scholar]
  32. Terkeltaub R., Zachariae C., Santoro D., Martin J., Peveri P., Matsushima K. Monocyte-derived neutrophil chemotactic factor/interleukin-8 is a potential mediator of crystal-induced inflammation. Arthritis Rheum. 1991 Jul;34(7):894–903. doi: 10.1002/art.1780340716. [DOI] [PubMed] [Google Scholar]
  33. Tsien R. Y., Pozzan T., Rink T. J. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol. 1982 Aug;94(2):325–334. doi: 10.1083/jcb.94.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Walz A., Meloni F., Clark-Lewis I., von Tscharner V., Baggiolini M. [Ca2+]i changes and respiratory burst in human neutrophils and monocytes induced by NAP-1/interleukin-8, NAP-2, and gro/MGSA. J Leukoc Biol. 1991 Sep;50(3):279–286. doi: 10.1002/jlb.50.3.279. [DOI] [PubMed] [Google Scholar]
  35. Wang J. F., Komarov P., Sies H., de Groot H. Inhibition of superoxide and nitric oxide release and protection from reoxygenation injury by Ebselen in rat Kupffer cells. Hepatology. 1992 Jun;15(6):1112–1116. doi: 10.1002/hep.1840150623. [DOI] [PubMed] [Google Scholar]
  36. Watson F., Robinson J., Edwards S. W. Protein kinase C-dependent and -independent activation of the NADPH oxidase of human neutrophils. J Biol Chem. 1991 Apr 25;266(12):7432–7439. [PubMed] [Google Scholar]
  37. Weening R. S., Wever R., Roos D. Quantitative aspects of the production of superoxide radicals by phagocytizing human granulocytes. J Lab Clin Med. 1975 Feb;85(2):245–252. [PubMed] [Google Scholar]
  38. Weisbart R. H., Golde D. W., Gasson J. C. Biosynthetic human GM-CSF modulates the number and affinity of neutrophil f-Met-Leu-Phe receptors. J Immunol. 1986 Dec 1;137(11):3584–3587. [PubMed] [Google Scholar]
  39. Weisbart R. H., Kwan L., Golde D. W., Gasson J. C. Human GM-CSF primes neutrophils for enhanced oxidative metabolism in response to the major physiological chemoattractants. Blood. 1987 Jan;69(1):18–21. [PubMed] [Google Scholar]
  40. Willems J., Joniau M., Cinque S., van Damme J. Human granulocyte chemotactic peptide (IL-8) as a specific neutrophil degranulator: comparison with other monokines. Immunology. 1989 Aug;67(4):540–542. [PMC free article] [PubMed] [Google Scholar]
  41. Yoshimura T., Matsushima K., Tanaka S., Robinson E. A., Appella E., Oppenheim J. J., Leonard E. J. Purification of a human monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9233–9237. doi: 10.1073/pnas.84.24.9233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yuo A., Kitagawa S., Kasahara T., Matsushima K., Saito M., Takaku F. Stimulation and priming of human neutrophils by interleukin-8: cooperation with tumor necrosis factor and colony-stimulating factors. Blood. 1991 Nov 15;78(10):2708–2714. [PubMed] [Google Scholar]
  43. Yuo A., Kitagawa S., Suzuki I., Urabe A., Okabe T., Saito M., Takaku F. Tumor necrosis factor as an activator of human granulocytes. Potentiation of the metabolisms triggered by the Ca2+-mobilizing agonists. J Immunol. 1989 Mar 1;142(5):1678–1684. [PubMed] [Google Scholar]
  44. van GELDER B., SLATER E. C. The extinction coefficient of cytochrome c. Biochim Biophys Acta. 1962 Apr 23;58:593–595. doi: 10.1016/0006-3002(62)90073-2. [DOI] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES