Abstract
The ability of lactoferrin (Lf) bound to Streptococcus agalactiae to interfere with the deposition of complement components on the bacterial surface was investigated by enzyme-linked immunosorbent assay (ELISA). By using a strain of S. agalactiae which activates the alternative pathway of complement in the absence of antibodies, it was found that pretreatment of bacteria with Lf shortened the lag phase preceding the deposition of C3 on bacteria. The kinetics of C3 deposition was comparable to that obtained by adding antibodies against S. agalactiae to agammaglobulinaemic precolostral calf serum (PCS) heated at 56 degrees for 3 min to inactivate the alternative pathway. Accelerated C3 deposition did not occur in the absence of Ca2+ ions. Deposition of C4 on bacteria occurred only when either antibodies or Lf were added to PCS. These results demonstrate that the interaction of lactoferrin with bacteria activated the classical pathway of complement in the absence of antibodies. The binding of purified C1q to bacteria was promoted in a dose-dependent manner by Lf, suggesting that recruitment of classical pathway of complement resulted from the interaction of C1q with Lf adsorbed to the bacterial surface. Phagocytosis of bacteria opsonized with heated PCS (at 56 degrees for 3 min) and Lf was comparable to that occurring in the presence of heated PCS and antibodies. In conclusion, Lf was able to substitute for antibodies in order to activate the classical pathway of complement and to opsonize unencapsulated S. agalactiae efficiently.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker C. J., Edwards M. S., Webb B. J., Kasper D. L. Antibody-independent classical pathway-mediated opsonophagocytosis of type Ia, group B streptococcus. J Clin Invest. 1982 Feb;69(2):394–404. doi: 10.1172/JCI110463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boulard C. Degradation of bovine C3 by serine proteases from parasites Hypoderma lineatum (Diptera, Oestridae). Vet Immunol Immunopathol. 1989 Mar;20(4):387–398. doi: 10.1016/0165-2427(89)90083-4. [DOI] [PubMed] [Google Scholar]
- Bullen J. J., Rogers H. J., Griffiths E. Role of iron in bacterial infection. Curr Top Microbiol Immunol. 1978;80:1–35. doi: 10.1007/978-3-642-66956-9_1. [DOI] [PubMed] [Google Scholar]
- Campbell R. D., Booth N. A., Fothergill J. E. Purification and characterization of subcomponent C1q of the first component of bovine complement. Biochem J. 1979 Feb 1;177(2):531–540. doi: 10.1042/bj1770531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carlson G. P., Kaneko J. J. Isolation of leukocytes from bovine peripheral blood. Proc Soc Exp Biol Med. 1973 Mar;142(3):853–856. doi: 10.3181/00379727-142-37131. [DOI] [PubMed] [Google Scholar]
- Castellino F. J., Fish W. W., Mann K. G. Structural studies on bovine lactoferrin. J Biol Chem. 1970 Sep 10;245(17):4269–4275. [PubMed] [Google Scholar]
- Frank M. M., Fries L. F. The role of complement in inflammation and phagocytosis. Immunol Today. 1991 Sep;12(9):322–326. doi: 10.1016/0167-5699(91)90009-I. [DOI] [PubMed] [Google Scholar]
- Hekman A. Association of lactoferrin with other proteins, as demonstrated by changes in electrophoretic mobility. Biochim Biophys Acta. 1971 Dec 28;251(3):380–387. doi: 10.1016/0005-2795(71)90126-7. [DOI] [PubMed] [Google Scholar]
- Kievits F., Kijlstra A. Inhibition of C3 deposition on solid-phase bound immune complexes by lactoferrin. Immunology. 1985 Mar;54(3):449–456. [PMC free article] [PubMed] [Google Scholar]
- Kijlstra A., Jeurissen S. H. Modulation of classical C3 convertase of complement by tear lactoferrin. Immunology. 1982 Oct;47(2):263–270. [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Malmquist J., Johansson B. G. Interaction of lactoferrin with agar gels and with Trypan Blue. Biochim Biophys Acta. 1971 Apr 27;236(1):38–46. doi: 10.1016/0005-2795(71)90146-2. [DOI] [PubMed] [Google Scholar]
- Masson P. L., Heremans J. F. Metal-combining properties of human lactoferrin (red milk protein). 1. The involvement of bicarbonate in the reaction. Eur J Biochem. 1968 Dec 5;6(4):579–584. doi: 10.1111/j.1432-1033.1968.tb00484.x. [DOI] [PubMed] [Google Scholar]
- Naidu A. S., Andersson M., Miedzobrodzki J., Forsgren A., Watts J. L. Bovine lactoferrin receptors in Staphylococcus aureus isolated from bovine mastitis. J Dairy Sci. 1991 Apr;74(4):1218–1226. doi: 10.3168/jds.s0022-0302(91)78277-5. [DOI] [PubMed] [Google Scholar]
- Neuhoff V., Arold N., Taube D., Ehrhardt W. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis. 1988 Jun;9(6):255–262. doi: 10.1002/elps.1150090603. [DOI] [PubMed] [Google Scholar]
- Pang A. S., Aston W. P. The alternative complement pathway in bovine serum: the isolation of a serum protein with factor B activity. Immunochemistry. 1978 Aug;15(8):529–534. doi: 10.1016/0161-5890(78)90004-4. [DOI] [PubMed] [Google Scholar]
- Rainard P. Bacteriostasis of Escherichia coli by bovine lactoferrin, transferrin and immunoglobulins (IgG1, IgG2, IgM) acting alone or in combination. Vet Microbiol. 1986 Feb;11(1-2):103–115. doi: 10.1016/0378-1135(86)90011-8. [DOI] [PubMed] [Google Scholar]
- Rainard P. Binding of bovine lactoferrin to Streptococcus agalactiae. FEMS Microbiol Lett. 1992 Nov 1;77(1-3):235–239. doi: 10.1016/0378-1097(92)90162-h. [DOI] [PubMed] [Google Scholar]
- Rainard P., Boulard C. Opsonization of Streptococcus agalactiae of bovine origin by complement and antibodies against group B polysaccharide. Infect Immun. 1992 Nov;60(11):4801–4808. doi: 10.1128/iai.60.11.4801-4808.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rainard P., Lautrou Y., Sarradin P., Poutrel B. Protein X of Streptococcus agalactiae induces opsonic antibodies in cows. J Clin Microbiol. 1991 Sep;29(9):1842–1846. doi: 10.1128/jcm.29.9.1842-1846.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Redhead K., Hill T., Chart H. Interaction of lactoferrin and transferrins with the outer membrane of Bordetella pertussis. J Gen Microbiol. 1987 Apr;133(4):891–898. doi: 10.1099/00221287-133-4-891. [DOI] [PubMed] [Google Scholar]
- Schepers G., Weiner E. M. Human C1q: rapid isolation and quantitative determination by immunodiffusion. J Immunol Methods. 1984 Feb 24;67(1):185–192. doi: 10.1016/0022-1759(84)90097-8. [DOI] [PubMed] [Google Scholar]
- Schryvers A. B. Identification of the transferrin- and lactoferrin-binding proteins in Haemophilus influenzae. J Med Microbiol. 1989 Jun;29(2):121–130. doi: 10.1099/00222615-29-2-121. [DOI] [PubMed] [Google Scholar]
- Smith K. L., Schanbacher F. L. Lactoferrin as a factor of resistance to infection of the bovine mammary gland. J Am Vet Med Assoc. 1977 May 15;170(10 Pt 2):1224–1227. [PubMed] [Google Scholar]
- Verhoef J., Peterson P., Kim Y., Sabath L. D., Quie P. G. Opsonic requirements for staphylococcal phagocytosis. Heterogeneity among strains. Immunology. 1977 Aug;33(2):191–197. [PMC free article] [PubMed] [Google Scholar]
- Yonemasu K., Stroud R. M. Clq: rapid purification method for preparation of monospecific antisera and for biochemical studies. J Immunol. 1971 Feb;106(2):304–313. [PubMed] [Google Scholar]
