Skip to main content
Immunology logoLink to Immunology
. 1993 Jul;79(3):498–505.

Morphological, phenotypic and functional characteristics of a pure population of CD56+ CD16- CD3- large granular lymphocytes generated from human duodenal mucosa.

G Pang 1, A Buret 1, R T Batey 1, Q Y Chen 1, L Couch 1, A Cripps 1, R Clancy 1
PMCID: PMC1421995  PMID: 7691728

Abstract

Interleukin-2 (IL-2)-dependent large granular lymphocytes (LGL) with a distinctive surface phenotype were generated from histologically normal duodenal biopsy tissues. Immunoperoxidase staining of the mucosa with an anti-CD56 monoclonal antibody revealed LGL localized in the lamina propria rather than in the epithelium. Light and electron microscopy demonstrated azurophilic and electron-dense cytoplasmic granules. Flow cytometry analysis revealed that these cells express CD45, CD56, CD2, CD7, CD11a, CD18, CD69 and the intermediate affinity (p70) IL-2 receptor (IL-2R) but not CD57, CD16, CD3, CD4, CD5, CD8, CD45RA, CD25, or the high affinity p55 IL-2R. The LGL proliferated when cultured in the presence of human rIL-2 but not in the presence of human rIL-4. Functional studies demonstrated that the LGL had strong cytotoxicity against natural killer (NK) target cells, K562, but not NK-resistant targets such as Colo 205, Melanoma and Epstein-Barr virus (EBV)-transformed B-cell lines. The LGL expressed genes for IL-5, IL-8, granulocyte-macrophage colony-stimulating factor (GM-CSF) and tumour necrosis factor-alpha (TNF-alpha) and the corresponding cytokines were detected in culture supernatant. These results provide evidence for an important role of gut mucosal LGL in the induction and regulation of inflammation and immunity in the gut.

Full text

PDF
498

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anegón I., Cuturi M. C., Trinchieri G., Perussia B. Interaction of Fc receptor (CD16) ligands induces transcription of interleukin 2 receptor (CD25) and lymphokine genes and expression of their products in human natural killer cells. J Exp Med. 1988 Feb 1;167(2):452–472. doi: 10.1084/jem.167.2.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Camussi G., Aglietta M., Malavasi F., Tetta C., Piacibello W., Sanavio F., Bussolino F. The release of platelet-activating factor from human endothelial cells in culture. J Immunol. 1983 Nov;131(5):2397–2403. [PubMed] [Google Scholar]
  3. Chong A. S., Scuderi P., Grimes W. J., Hersh E. M. Tumor targets stimulate IL-2 activated killer cells to produce interferon-gamma and tumor necrosis factor. J Immunol. 1989 Mar 15;142(6):2133–2139. [PubMed] [Google Scholar]
  4. Cuturi M. C., Anegón I., Sherman F., Loudon R., Clark S. C., Perussia B., Trinchieri G. Production of hematopoietic colony-stimulating factors by human natural killer cells. J Exp Med. 1989 Feb 1;169(2):569–583. doi: 10.1084/jem.169.2.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ellis T. M., Fisher R. I. Functional heterogeneity of Leu 19"bright"+ and Leu 19"dim"+ lymphokine-activated killer cells. J Immunol. 1989 Apr 15;142(8):2949–2954. [PubMed] [Google Scholar]
  6. Espevik T., Nissen-Meyer J. A highly sensitive cell line, WEHI 164 clone 13, for measuring cytotoxic factor/tumor necrosis factor from human monocytes. J Immunol Methods. 1986 Dec 4;95(1):99–105. doi: 10.1016/0022-1759(86)90322-4. [DOI] [PubMed] [Google Scholar]
  7. Ferry B. L., Starkey P. M., Sargent I. L., Watt G. M., Jackson M., Redman C. W. Cell populations in the human early pregnancy decidua: natural killer activity and response to interleukin-2 of CD56-positive large granular lymphocytes. Immunology. 1990 Aug;70(4):446–452. [PMC free article] [PubMed] [Google Scholar]
  8. Fiocchi C., Tubbs R. R., Youngman K. R. Human intestinal mucosal mononuclear cells exhibit lymphokine-activated killer cell activity. Gastroenterology. 1985 Mar;88(3):625–637. doi: 10.1016/0016-5085(85)90130-1. [DOI] [PubMed] [Google Scholar]
  9. Fiocchi C., Youngman K. R., Yen-Lieberman B., Tubbs R. R. Modulation of intestinal immune reactivity by interleukin 2. Phenotypic and functional analysis of lymphokine-activated killer cells from human intestinal mucosa. Dig Dis Sci. 1988 Oct;33(10):1305–1315. doi: 10.1007/BF01536684. [DOI] [PubMed] [Google Scholar]
  10. Gibson P. R., Jewell D. P. Local immune mechanisms in inflammatory bowel disease and colorectal carcinoma. Natural killer cells and their activity. Gastroenterology. 1986 Jan;90(1):12–19. doi: 10.1016/0016-5085(86)90068-5. [DOI] [PubMed] [Google Scholar]
  11. Gismondi A., Morrone S., Humphries M. J., Piccoli M., Frati L., Santoni A. Human natural killer cells express VLA-4 and VLA-5, which mediate their adhesion to fibronectin. J Immunol. 1991 Jan 1;146(1):384–392. [PubMed] [Google Scholar]
  12. Herberman R. B., Ortaldo J. R. Natural killer cells: their roles in defenses against disease. Science. 1981 Oct 2;214(4516):24–30. doi: 10.1126/science.7025208. [DOI] [PubMed] [Google Scholar]
  13. Hogan P. G., Hapel A. J., Doe W. F. Lymphokine-activated and natural killer cell activity in human intestinal mucosa. J Immunol. 1985 Sep;135(3):1731–1738. [PubMed] [Google Scholar]
  14. Lanier L. L., Le A. M., Civin C. I., Loken M. R., Phillips J. H. The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J Immunol. 1986 Jun 15;136(12):4480–4486. [PubMed] [Google Scholar]
  15. Lanier L. L., Phillips J. H., Hackett J., Jr, Tutt M., Kumar V. Natural killer cells: definition of a cell type rather than a function. J Immunol. 1986 Nov 1;137(9):2735–2739. [PubMed] [Google Scholar]
  16. Nagler A., Lanier L. L., Cwirla S., Phillips J. H. Comparative studies of human FcRIII-positive and negative natural killer cells. J Immunol. 1989 Nov 15;143(10):3183–3191. [PubMed] [Google Scholar]
  17. Newman W., Fast L. D., Rose L. M. Blockade of NK cell lysis is a property of monoclonal antibodies that bind to distinct regions of T-200. J Immunol. 1983 Oct;131(4):1742–1747. [PubMed] [Google Scholar]
  18. Phillips J. H., Lanier L. L. Dissection of the lymphokine-activated killer phenomenon. Relative contribution of peripheral blood natural killer cells and T lymphocytes to cytolysis. J Exp Med. 1986 Sep 1;164(3):814–825. doi: 10.1084/jem.164.3.814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Phillips J. H., Takeshita T., Sugamura K., Lanier L. L. Activation of natural killer cells via the p75 interleukin 2 receptor. J Exp Med. 1989 Jul 1;170(1):291–296. doi: 10.1084/jem.170.1.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schmidt R. E., Caulfield J. P., Michon J., Hein A., Kamada M. M., MacDermott R. P., Stevens R. L., Ritz J. T11/CD2 activation of cloned human natural killer cells results in increased conjugate formation and exocytosis of cytolytic granules. J Immunol. 1988 Feb 1;140(3):991–1002. [PubMed] [Google Scholar]
  21. Shanahan F., Deem R., Nayersina R., Leman B., Targan S. Human mucosal T-cell cytotoxicity. Gastroenterology. 1988 Apr;94(4):960–967. doi: 10.1016/0016-5085(88)90554-9. [DOI] [PubMed] [Google Scholar]
  22. Somersalo K., Saksela E. Fibronectin facilitates the migration of human natural killer cells. Eur J Immunol. 1991 Jan;21(1):35–42. doi: 10.1002/eji.1830210107. [DOI] [PubMed] [Google Scholar]
  23. Starling G. C., Hart D. N. CD45 molecule cross-linking inhibits natural killer cell-mediated lysis independently of lytic triggering. Immunology. 1990 Oct;71(2):190–195. [PMC free article] [PubMed] [Google Scholar]
  24. Timonen T., Ortaldo J. R., Herberman R. B. Characteristics of human large granular lymphocytes and relationship to natural killer and K cells. J Exp Med. 1981 Mar 1;153(3):569–582. doi: 10.1084/jem.153.3.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Toossi Z., Paris M. R., Purvis S. F., Ellner J. J. Regulation of human T-cell production of interleukin 2 by Leu 11 (CD16) positive large granular lymphocytes. Cell Immunol. 1989 Feb;118(2):413–424. doi: 10.1016/0008-8749(89)90389-4. [DOI] [PubMed] [Google Scholar]
  26. VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES