Skip to main content
Immunology logoLink to Immunology
. 1993 Nov;80(3):401–406.

Lymphocyte migration through cultured endothelial cell monolayers derived from the blood-retinal barrier.

J Greenwood 1, V L Calder 1
PMCID: PMC1422218  PMID: 8288317

Abstract

Lymphocyte migration across endothelial monolayers, derived from the rat blood-retinal barrier, was recorded in vitro using time-lapse video microscopy. Syngeneic lymphocytes were plated out onto endothelial cell monolayers for 4 hr and their surface motility and transmonolayer migration recorded and quantified. Under resting conditions lymphocytes, obtained from peripheral lymph nodes (PLN), were small, rounded and static with less than 5% migrating across the monolayer. Activation of the lymphocytes with concanavalin A (Con A) increased their size and surface motility on both interferon-gamma (IFN-gamma)-treated and resting endothelia, but did not alter the number migrating across the monolayer. Similar results were also found for phytohaemagglutinin (PHA)-activated lymphocytes. Interleukin-2 (IL-2)-dependent CD4+ T-cell lines specifically recognizing either retinal soluble antigen (S-Ag) or bovine serum albumin (BSA) exhibited significantly greater surface motility over the endothelial monolayers than the mitogen-activated PLN lymphocytes. By 4 hr, in excess of 50% of the T-cell line lymphocytes had migrated across the endothelial monolayer. Treatment of the endothelial cells with IFN-gamma caused a small, but not significant, increase in the level of T-cell line lymphocyte migration. These results suggest that the migration of lymphocytes across central nervous system-derived endothelia is primarily dependent upon the state and mode of lymphocyte activation.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beesley J. E., Pearson J. D., Hutchings A., Carleton J. S., Gordon J. L. Granulocyte migration through endothelium in culture. J Cell Sci. 1979 Aug;38:237–248. doi: 10.1242/jcs.38.1.237. [DOI] [PubMed] [Google Scholar]
  2. Dustin M. L., Rothlein R., Bhan A. K., Dinarello C. A., Springer T. A. Induction by IL 1 and interferon-gamma: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1). J Immunol. 1986 Jul 1;137(1):245–254. [PubMed] [Google Scholar]
  3. Dustin M. L., Springer T. A. T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature. 1989 Oct 19;341(6243):619–624. doi: 10.1038/341619a0. [DOI] [PubMed] [Google Scholar]
  4. Greenwood J. Characterization of a rat retinal endothelial cell culture and the expression of P-glycoprotein in brain and retinal endothelium in vitro. J Neuroimmunol. 1992 Jul;39(1-2):123–132. doi: 10.1016/0165-5728(92)90181-j. [DOI] [PubMed] [Google Scholar]
  5. Hickey W. F., Hsu B. L., Kimura H. T-lymphocyte entry into the central nervous system. J Neurosci Res. 1991 Feb;28(2):254–260. doi: 10.1002/jnr.490280213. [DOI] [PubMed] [Google Scholar]
  6. Hughes C. C., Male D. K., Lantos P. L. Adhesion of lymphocytes to cerebral microvascular cells: effects of interferon-gamma, tumour necrosis factor and interleukin-1. Immunology. 1988 Aug;64(4):677–681. [PMC free article] [PubMed] [Google Scholar]
  7. Issekutz T. B. Effects of six different cytokines on lymphocyte adherence to microvascular endothelium and in vivo lymphocyte migration in the rat. J Immunol. 1990 Mar 15;144(6):2140–2146. [PubMed] [Google Scholar]
  8. Issekutz T. B., Stoltz J. M., vd Meide P. Lymphocyte recruitment in delayed-type hypersensitivity. The role of IFN-gamma. J Immunol. 1988 May 1;140(9):2989–2993. [PubMed] [Google Scholar]
  9. Kavanaugh A. F., Lightfoot E., Lipsky P. E., Oppenheimer-Marks N. Role of CD11/CD18 in adhesion and transendothelial migration of T cells. Analysis utilizing CD18-deficient T cell clones. J Immunol. 1991 Jun 15;146(12):4149–4156. [PubMed] [Google Scholar]
  10. Liversidge J., Sewell H. F., Forrester J. V. Interactions between lymphocytes and cells of the blood-retina barrier: mechanisms of T lymphocyte adhesion to human retinal capillary endothelial cells and retinal pigment epithelial cells in vitro. Immunology. 1990 Nov;71(3):390–396. [PMC free article] [PubMed] [Google Scholar]
  11. Male D., Pryce G., Linke A., Rahman J. Lymphocyte migration into the CNS modelled in vitro. J Neuroimmunol. 1992 Oct;40(2-3):167–171. doi: 10.1016/0165-5728(92)90130-d. [DOI] [PubMed] [Google Scholar]
  12. Male D., Pyrce G., Hughes C., Lantos P. Lymphocyte migration into brain modelled in vitro: control by lymphocyte activation, cytokines, and antigen. Cell Immunol. 1990 Apr 15;127(1):1–11. doi: 10.1016/0008-8749(90)90109-5. [DOI] [PubMed] [Google Scholar]
  13. Oppenheimer-Marks N., Davis L. S., Bogue D. T., Ramberg J., Lipsky P. E. Differential utilization of ICAM-1 and VCAM-1 during the adhesion and transendothelial migration of human T lymphocytes. J Immunol. 1991 Nov 1;147(9):2913–2921. [PubMed] [Google Scholar]
  14. Oppenheimer-Marks N., Davis L. S., Lipsky P. E. Human T lymphocyte adhesion to endothelial cells and transendothelial migration. Alteration of receptor use relates to the activation status of both the T cell and the endothelial cell. J Immunol. 1990 Jul 1;145(1):140–148. [PubMed] [Google Scholar]
  15. Oppenheimer-Marks N., Ziff M. Migration of lymphocytes through endothelial cell monolayers: augmentation by interferon-gamma. Cell Immunol. 1988 Jul;114(2):307–323. doi: 10.1016/0008-8749(88)90324-3. [DOI] [PubMed] [Google Scholar]
  16. Pankonin G., Reipert B., Ager A. Interactions between interleukin-2-activated lymphocytes and vascular endothelium: binding to and migration across specialized and non-specialized endothelia. Immunology. 1992 Sep;77(1):51–60. [PMC free article] [PubMed] [Google Scholar]
  17. Pearson J. D., Carleton J. S., Beesley J. E., Hutchings A., Gordon J. L. Granulocyte adhesion to endothelium in culture. J Cell Sci. 1979 Aug;38:225–235. doi: 10.1242/jcs.38.1.225. [DOI] [PubMed] [Google Scholar]
  18. Pitzalis C., Kingsley G. H., Covelli M., Meliconi R., Markey A., Panayi G. S. Selective migration of the human helper-inducer memory T cell subset: confirmation by in vivo cellular kinetic studies. Eur J Immunol. 1991 Feb;21(2):369–376. doi: 10.1002/eji.1830210218. [DOI] [PubMed] [Google Scholar]
  19. Powrie F., Mason D. Phenotypic and functional heterogeneity of CD4+ T cells. Immunol Today. 1988 Sep;9(9):274–277. doi: 10.1016/0167-5699(88)91309-6. [DOI] [PubMed] [Google Scholar]
  20. Sanders M. E., Makgoba M. W., Sharrow S. O., Stephany D., Springer T. A., Young H. A., Shaw S. Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2, and LFA-1) and three other molecules (UCHL1, CDw29, and Pgp-1) and have enhanced IFN-gamma production. J Immunol. 1988 Mar 1;140(5):1401–1407. [PubMed] [Google Scholar]
  21. Sedgwick J. D., MacPhee I. A., Puklavec M. Isolation of encephalitogenic CD4+ T cell clones in the rat. Cloning methodology and interferon-gamma secretion. J Immunol Methods. 1989 Jul 26;121(2):185–196. doi: 10.1016/0022-1759(89)90159-2. [DOI] [PubMed] [Google Scholar]
  22. Shimizu Y., Newman W., Gopal T. V., Horgan K. J., Graber N., Beall L. D., van Seventer G. A., Shaw S. Four molecular pathways of T cell adhesion to endothelial cells: roles of LFA-1, VCAM-1, and ELAM-1 and changes in pathway hierarchy under different activation conditions. J Cell Biol. 1991 Jun;113(5):1203–1212. doi: 10.1083/jcb.113.5.1203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shimizu Y., Newman W., Tanaka Y., Shaw S. Lymphocyte interactions with endothelial cells. Immunol Today. 1992 Mar;13(3):106–112. doi: 10.1016/0167-5699(92)90151-V. [DOI] [PubMed] [Google Scholar]
  24. Van Epps D. E., Potter J., Vachula M., Smith C. W., Anderson D. C. Suppression of human lymphocyte chemotaxis and transendothelial migration by anti-LFA-1 antibody. J Immunol. 1989 Nov 15;143(10):3207–3210. [PubMed] [Google Scholar]
  25. Wekerle H., Engelhardt B., Risau W., Meyermann R. Interaction of T lymphocytes with cerebral endothelial cells in vitro. Brain Pathol. 1991 Jan;1(2):107–114. doi: 10.1111/j.1750-3639.1991.tb00647.x. [DOI] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES