Skip to main content
Immunology logoLink to Immunology
. 1993 Dec;80(4):553–560.

Studies of lymphocyte transendothelial migration: analysis of migrated cell phenotypes with regard to CD31 (PECAM-1), CD45RA and CD45RO.

I N Bird 1, J H Spragg 1, A Ager 1, N Matthews 1
PMCID: PMC1422238  PMID: 8307606

Abstract

CD31 is a 130,000 MW cell-surface glycoprotein expressed on endothelial cells, polymorphonuclear leucocytes, monocytes and about 50% of peripheral blood lymphocytes, and it has been proposed that it plays a role in transendothelial migration. If it is involved in endothelial transmigration of lymphocytes then the proportion of CD31+ cells should be increased in the lymphocyte population which has crossed an endothelial monolayer. This was tested using two endothelial types, namely human umbilical vein endothelial cells (HUVEC) and rat high endothelial venule (RHEV) cells. As a control, lymphocyte CD45RA and CD45RO expression was also determined since there is a correlation between lymphocytes bearing these isoforms and different migratory patterns. Double labelling techniques showed a close correlation between CD31 and CD45RA expression. With HUVEC monolayers, the transmigrated lymphocyte population was depleted of CD31+ cells. This depletion was even more marked if the HUVEC monolayers had been stimulated with interleukin-1 beta (IL-1 beta). The migrated lymphocytes were enriched for CD31-CD45RO+ cells but depleted of CD31+CD45RA+ cells. In addition, lymphocyte populations depleted of CD31+ cells by immunopanning were also able to migrate across HUVEC monolayers. Taken together these data suggest that lymphocyte CD31 expression is not necessary for transmigration across HUVEC monolayers and, if anything, is negatively correlated with transmigration. With the second endothelial cell type, RHEV cells, there was no consistent change in the proportion of CD31+ lymphocyte in the transmigrated population, suggesting neither a positive nor a negative correlation between CD31+ expression and lymphocyte transmigration across RHEV cells. However, with both endothelial cell types, the migrated lymphocyte populations were enriched for the marker CD45RO. In conclusion, lymphocyte surface expression of CD31 is not necessary for transmigration across the endothelial cell types used in this study, but with both cell types an enrichment of CD45RO+ lymphocytes is seen in the migrated population.

Full text

PDF
553

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ager A. Isolation and culture of high endothelial cells from rat lymph nodes. J Cell Sci. 1987 Feb;87(Pt 1):133–144. doi: 10.1242/jcs.87.1.133. [DOI] [PubMed] [Google Scholar]
  2. Ager A., Mistry S. Interaction between lymphocytes and cultured high endothelial cells: an in vitro model of lymphocyte migration across high endothelial venule endothelium. Eur J Immunol. 1988 Aug;18(8):1265–1274. doi: 10.1002/eji.1830180818. [DOI] [PubMed] [Google Scholar]
  3. Albelda S. M., Muller W. A., Buck C. A., Newman P. J. Molecular and cellular properties of PECAM-1 (endoCAM/CD31): a novel vascular cell-cell adhesion molecule. J Cell Biol. 1991 Sep;114(5):1059–1068. doi: 10.1083/jcb.114.5.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Albelda S. M., Oliver P. D., Romer L. H., Buck C. A. EndoCAM: a novel endothelial cell-cell adhesion molecule. J Cell Biol. 1990 Apr;110(4):1227–1237. doi: 10.1083/jcb.110.4.1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
  6. Felzmann T., Gadd S., Majdic O., Maurer D., Petera P., Smolen J., Knapp W. Analysis of function-associated receptor molecules on peripheral blood and synovial fluid granulocytes from patients with rheumatoid and reactive arthritis. J Clin Immunol. 1991 Jul;11(4):205–212. doi: 10.1007/BF00917426. [DOI] [PubMed] [Google Scholar]
  7. Goyert S. M., Ferrero E. M., Seremetis S. V., Winchester R. J., Silver J., Mattison A. C. Biochemistry and expression of myelomonocytic antigens. J Immunol. 1986 Dec 15;137(12):3909–3914. [PubMed] [Google Scholar]
  8. Huang A. J., Furie M. B., Nicholson S. C., Fischbarg J., Liebovitch L. S., Silverstein S. C. Effects of human neutrophil chemotaxis across human endothelial cell monolayers on the permeability of these monolayers to ions and macromolecules. J Cell Physiol. 1988 Jun;135(3):355–366. doi: 10.1002/jcp.1041350302. [DOI] [PubMed] [Google Scholar]
  9. Jaffe E. A., Nachman R. L., Becker C. G., Minick C. R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973 Nov;52(11):2745–2756. doi: 10.1172/JCI107470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lampugnani M. G., Resnati M., Dejana E., Marchisio P. C. The role of integrins in the maintenance of endothelial monolayer integrity. J Cell Biol. 1991 Feb;112(3):479–490. doi: 10.1083/jcb.112.3.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mackay C. R. T-cell memory: the connection between function, phenotype and migration pathways. Immunol Today. 1991 Jun;12(6):189–192. doi: 10.1016/0167-5699(91)90051-T. [DOI] [PubMed] [Google Scholar]
  12. Masuyama J., Berman J. S., Cruikshank W. W., Morimoto C., Center D. M. Evidence for recent as well as long term activation of T cells migrating through endothelial cell monolayers in vitro. J Immunol. 1992 Mar 1;148(5):1367–1374. [PubMed] [Google Scholar]
  13. Metzelaar M. J., Korteweg J., Sixma J. J., Nieuwenhuis H. K. Biochemical characterization of PECAM-1 (CD31 antigen) on human platelets. Thromb Haemost. 1991 Dec 2;66(6):700–707. [PubMed] [Google Scholar]
  14. Milton S. G., Knutson V. P. Comparison of the function of the tight junctions of endothelial cells and epithelial cells in regulating the movement of electrolytes and macromolecules across the cell monolayer. J Cell Physiol. 1990 Sep;144(3):498–504. doi: 10.1002/jcp.1041440318. [DOI] [PubMed] [Google Scholar]
  15. Muller W. A., Berman M. E., Newman P. J., DeLisser H. M., Albelda S. M. A heterophilic adhesion mechanism for platelet/endothelial cell adhesion molecule 1 (CD31). J Exp Med. 1992 May 1;175(5):1401–1404. doi: 10.1084/jem.175.5.1401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Muller W. A., Ratti C. M., McDonnell S. L., Cohn Z. A. A human endothelial cell-restricted, externally disposed plasmalemmal protein enriched in intercellular junctions. J Exp Med. 1989 Aug 1;170(2):399–414. doi: 10.1084/jem.170.2.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Newman I., Wilkinson P. C. Locomotor responses of human CD45 lymphocyte subsets: preferential locomotion of CD45RO+ lymphocytes in response to attractants and mitogens. Immunology. 1993 Jan;78(1):92–98. [PMC free article] [PubMed] [Google Scholar]
  18. Newman P. J., Berndt M. C., Gorski J., White G. C., 2nd, Lyman S., Paddock C., Muller W. A. PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily. Science. 1990 Mar 9;247(4947):1219–1222. doi: 10.1126/science.1690453. [DOI] [PubMed] [Google Scholar]
  19. Ohto H., Maeda H., Shibata Y., Chen R. F., Ozaki Y., Higashihara M., Takeuchi A., Tohyama H. A novel leukocyte differentiation antigen: two monoclonal antibodies TM2 and TM3 define a 120-kd molecule present on neutrophils, monocytes, platelets, and activated lymphoblasts. Blood. 1985 Oct;66(4):873–881. [PubMed] [Google Scholar]
  20. Osborn L., Hession C., Tizard R., Vassallo C., Luhowskyj S., Chi-Rosso G., Lobb R. Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell. 1989 Dec 22;59(6):1203–1211. doi: 10.1016/0092-8674(89)90775-7. [DOI] [PubMed] [Google Scholar]
  21. Pitzalis C., Kingsley G., Haskard D., Panayi G. The preferential accumulation of helper-inducer T lymphocytes in inflammatory lesions: evidence for regulation by selective endothelial and homotypic adhesion. Eur J Immunol. 1988 Sep;18(9):1397–1404. doi: 10.1002/eji.1830180915. [DOI] [PubMed] [Google Scholar]
  22. Shimizu Y., Newman W., Tanaka Y., Shaw S. Lymphocyte interactions with endothelial cells. Immunol Today. 1992 Mar;13(3):106–112. doi: 10.1016/0167-5699(92)90151-V. [DOI] [PubMed] [Google Scholar]
  23. Simmons D. L., Walker C., Power C., Pigott R. Molecular cloning of CD31, a putative intercellular adhesion molecule closely related to carcinoembryonic antigen. J Exp Med. 1990 Jun 1;171(6):2147–2152. doi: 10.1084/jem.171.6.2147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Springer T. A. Adhesion receptors of the immune system. Nature. 1990 Aug 2;346(6283):425–434. doi: 10.1038/346425a0. [DOI] [PubMed] [Google Scholar]
  25. Stockinger H., Gadd S. J., Eher R., Majdic O., Schreiber W., Kasinrerk W., Strass B., Schnabl E., Knapp W. Molecular characterization and functional analysis of the leukocyte surface protein CD31. J Immunol. 1990 Dec 1;145(11):3889–3897. [PubMed] [Google Scholar]
  26. Stockinger H., Gadd S. J., Eher R., Majdic O., Schreiber W., Kasinrerk W., Strass B., Schnabl E., Knapp W. Molecular characterization and functional analysis of the leukocyte surface protein CD31. J Immunol. 1990 Dec 1;145(11):3889–3897. [PubMed] [Google Scholar]
  27. Stockinger H., Schreiber W., Majdic O., Holter W., Maurer D., Knapp W. Phenotype of human T cells expressing CD31, a molecule of the immunoglobulin supergene family. Immunology. 1992 Jan;75(1):53–58. [PMC free article] [PubMed] [Google Scholar]
  28. Szekanecz Z., Humphries M. J., Ager A. Lymphocyte adhesion to high endothelium is mediated by two beta 1 integrin receptors for fibronectin, alpha 4 beta 1 and alpha 5 beta 1. J Cell Sci. 1992 Apr;101(Pt 4):885–894. doi: 10.1242/jcs.101.4.885. [DOI] [PubMed] [Google Scholar]
  29. Tanaka Y., Albelda S. M., Horgan K. J., van Seventer G. A., Shimizu Y., Newman W., Hallam J., Newman P. J., Buck C. A., Shaw S. CD31 expressed on distinctive T cell subsets is a preferential amplifier of beta 1 integrin-mediated adhesion. J Exp Med. 1992 Jul 1;176(1):245–253. doi: 10.1084/jem.176.1.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Thorp K. M., Southern C., Bird I. N., Matthews N. Tumour necrosis factor induction of ELAM-1 and ICAM-1 on human umbilical vein endothelial cells--analysis of tumour necrosis factor-receptor interactions. Cytokine. 1992 Jul;4(4):313–319. doi: 10.1016/1043-4666(92)90072-y. [DOI] [PubMed] [Google Scholar]
  31. Torimoto Y., Rothstein D. M., Dang N. H., Schlossman S. F., Morimoto C. CD31, a novel cell surface marker for CD4 cells of suppressor lineage, unaltered by state of activation. J Immunol. 1992 Jan 15;148(2):388–396. [PubMed] [Google Scholar]
  32. Zehnder J. L., Hirai K., Shatsky M., McGregor J. L., Levitt L. J., Leung L. L. The cell adhesion molecule CD31 is phosphorylated after cell activation. Down-regulation of CD31 in activated T lymphocytes. J Biol Chem. 1992 Mar 15;267(8):5243–5249. [PubMed] [Google Scholar]
  33. van Mourik J. A., Leeksma O. C., Reinders J. H., de Groot P. G., Zandbergen-Spaargaren J. Vascular endothelial cells synthesize a plasma membrane protein indistinguishable from the platelet membrane glycoprotein IIa. J Biol Chem. 1985 Sep 15;260(20):11300–11306. [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES