Abstract
Effects of the thymus atrophy-inducing organotin compound di-n-butyltin dichloride (DBTC) on the differentiation and proliferation of immature rat thymocyte subsets were studied in vivo and in vitro. Incubation of freshly isolated CD4-CD8- or immature CD4-CD8+ (characterized as CD4-CD53-) thymocytes with 10(-7) M DBTC for 18 hr did not affect cell recovery or their ability to differentiate to CD4-CD8+ cells and CD4+CD8+ or to CD4+CD8+ cells, respectively. The same treatment decreased the spontaneous as well as the phytohaemagglutinin (PHA)-induced proliferation in both subsets. However, the inhibition of proliferation by DBTC of immature CD4-CD8+, but not of CD4-CD8- thymocytes, appeared to increase with their growth rate. Data show that differentiation of immature thymocytes can proceed independently of proliferation and that DBTC causes thymus atrophy by selectively inhibiting the proliferation of immature CD4-CD8+ thymocytes. Administration to rats of DBTC via the diet for 14 days resulted in an initial decrease of thymoblast number by day 2, followed by a decrease in the total number of thymocytes by day 4. Total thymocyte numbers were lowest on day 7 and did not significantly change thereafter. CD4/CD8 thymocyte subset distributions were similar to controls on day 4, but on day 7 of feeding a marked reduction of the percentage of CD4+CD8+ thymocytes and consequently an increase of the percentages of the three other CD4/CD8 subsets were found. Thereafter, the CD4/CD8 subset distribution recovered, reaching near control values on day 14, despite the very low numbers of thymoblasts and of total thymocytes at that time. Data together indicate that DBTC reduces the production of CD4+CD8+ and mature single-positive thymocytes by selectively inhibiting immature CD4-CD8+ thymocyte proliferation but without affecting the differentiation capacity of these cells. This suggests that thymocyte proliferation and differentiation are separately regulated processes.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angelisová P., Vlcek C., Stefanová I., Lipoldová M., Horejsí V. The human leucocyte surface antigen CD53 is a protein structurally similar to the CD37 and MRC OX-44 antigens. Immunogenetics. 1990;32(4):281–285. doi: 10.1007/BF00187099. [DOI] [PubMed] [Google Scholar]
- Aspinall R., Kampinga J., van den Bogaerde J. T-cell development in the fetus and the invariant series hypothesis. Immunol Today. 1991 Jan;12(1):7–10. doi: 10.1016/0167-5699(91)90105-3. [DOI] [PubMed] [Google Scholar]
- Brideau R. J., Carter P. B., McMaster W. R., Mason D. W., Williams A. F. Two subsets of rat T lymphocytes defined with monoclonal antibodies. Eur J Immunol. 1980 Aug;10(8):609–615. doi: 10.1002/eji.1830100807. [DOI] [PubMed] [Google Scholar]
- Ceredig R., Sekaly R. P., MacDonald H. R. Differentiation in vitro of Lyt 2+ thymocytes from embryonic Lyt 2- precursors. Nature. 1983 May 19;303(5914):248–250. doi: 10.1038/303248a0. [DOI] [PubMed] [Google Scholar]
- Dijkstra C. D., Döpp E. A., Joling P., Kraal G. The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3. Immunology. 1985 Mar;54(3):589–599. [PMC free article] [PubMed] [Google Scholar]
- Hugo P., Waanders G. A., Scollay R., Shortman K., Boyd R. L. Ontogeny of a novel CD4+CD8-CD3- thymocyte subpopulation: a comparison with CD4- CD8+ CD3- thymocytes. Int Immunol. 1990;2(3):209–218. doi: 10.1093/intimm/2.3.209. [DOI] [PubMed] [Google Scholar]
- Hünig T. Cross-linking of the T cell antigen receptor interferes with the generation of CD4+8+ thymocytes from their immediate CD4-8+ precursors. Eur J Immunol. 1988 Dec;18(12):2089–2092. doi: 10.1002/eji.1830181234. [DOI] [PubMed] [Google Scholar]
- Joling P., Tielen F. J., Vaessen L. M., Hesse C. J., Rozing J. Intrathymic differentiation in the rat. Adv Exp Med Biol. 1985;186:235–244. doi: 10.1007/978-1-4613-2463-8_29. [DOI] [PubMed] [Google Scholar]
- Matsumoto K., Yoshikai Y., Matsuzaki G., Asano T., Nomoto K. A novel CD3-J11d+ subset of CD4+CD8- cells repopulating thymus in radiation bone marrow chimeras. Eur J Immunol. 1989 Jul;19(7):1203–1207. doi: 10.1002/eji.1830190708. [DOI] [PubMed] [Google Scholar]
- Matsumoto K., Yoshikai Y., Moroi Y., Asano T., Ando T., Nomoto K. Two differential pathways from double-negative to double-positive thymocytes. Immunology. 1991 Jan;72(1):20–26. [PMC free article] [PubMed] [Google Scholar]
- Mombaerts P., Clarke A. R., Rudnicki M. A., Iacomini J., Itohara S., Lafaille J. J., Wang L., Ichikawa Y., Jaenisch R., Hooper M. L. Mutations in T-cell antigen receptor genes alpha and beta block thymocyte development at different stages. Nature. 1992 Nov 19;360(6401):225–231. doi: 10.1038/360225a0. [DOI] [PubMed] [Google Scholar]
- Nikolić-Zugić J., Moore M. W., Bevan M. J. Characterization of the subset of immature thymocytes which can undergo rapid in vitro differentiation. Eur J Immunol. 1989 Apr;19(4):649–653. doi: 10.1002/eji.1830190412. [DOI] [PubMed] [Google Scholar]
- Paterson D. J., Green J. R., Jefferies W. A., Puklavec M., Williams A. F. The MRC OX-44 antigen marks a functionally relevant subset among rat thymocytes. J Exp Med. 1987 Jan 1;165(1):1–13. doi: 10.1084/jem.165.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paterson D. J., Williams A. F. An intermediate cell in thymocyte differentiation that expresses CD8 but not CD4 antigen. J Exp Med. 1987 Nov 1;166(5):1603–1608. doi: 10.1084/jem.166.5.1603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pieters R. H., Bol M., Lam B. W., Seinen W., Bloksma N., Penninks A. H. Recovery from chemically induced thymus atrophy starts with CD4- CD8- CD2high TcR alpha beta-/low thymocytes and results in an increased formation of CD4- CD8- TcR alpha beta high thymocytes. Immunology. 1993 Apr;78(4):616–622. [PMC free article] [PubMed] [Google Scholar]
- Pieters R. H., Bol M., Lam B. W., Seinen W., Penninks A. H. The organotin-induced thymus atrophy, characterized by depletion of CD4+ CD8+ thymocytes, is preceded by a reduction of the immature CD4- CD8+ TcR alpha beta-/low CD2high thymoblast subset. Immunology. 1992 Jun;76(2):203–208. [PMC free article] [PubMed] [Google Scholar]
- Pieters R. H., Kampinga J., Bol-Schoenmakers M., Lam B. W., Penninks A. H., Seinen W. Organotin-induced thymus atrophy concerns the OX-44+ immature thymocytes. Relation to the interaction between early thymocytes and thymic epithelial cells? Thymus. 1989;14(1-3):79–88. [PubMed] [Google Scholar]
- Rubin B., Geisler G., Caspar S., Arnaud J. The indispensable CD2-CD3 molecules: a key to T-cell differentiation and functional activation. Scand J Immunol. 1992 Jul;36(1):1–6. doi: 10.1111/j.1365-3083.1992.tb02933.x. [DOI] [PubMed] [Google Scholar]
- Seinen W., Vos J. G., Brands R., Hooykaas H. Lymphocytotoxicity and immunosuppression by organotin compounds. Suppression of graft-versus-host reactivity, blast transformation, and E-rosette formation by di-n-butyltindichloride and di-n-octyltindichloride. Immunopharmacology. 1979 Jul;1(4):343–355. doi: 10.1016/0162-3109(79)90031-6. [DOI] [PubMed] [Google Scholar]
- Seinen W., Vos J. G., van Krieken R., Penninks A., Brands R., Hooykaas H. Toxicity of organotin compounds. III. Suppression of thymus-dependent immunity in rats by di-n-butyltindichloride and di-n-octyltindichloride. Toxicol Appl Pharmacol. 1977 Oct;42(1):213–224. doi: 10.1016/0041-008x(77)90211-3. [DOI] [PubMed] [Google Scholar]
- Seinen W., Willems M. I. Toxicity of organotin compounds. I. Atrophy of thymus and thymus-dependent lymphoid tissue in rats fed di-n-octyltindichloride. Toxicol Appl Pharmacol. 1976 Jan;35(1):63–75. doi: 10.1016/0041-008x(76)90111-3. [DOI] [PubMed] [Google Scholar]
- Snoeij N. J., Penninks A. H., Seinen W. Biological activity of organotin compounds--an overview. Environ Res. 1987 Dec;44(2):335–353. doi: 10.1016/s0013-9351(87)80242-6. [DOI] [PubMed] [Google Scholar]
- Snoeij N. J., Penninks A. H., Seinen W. Dibutyltin and tributyltin compounds induce thymus atrophy in rats due to a selective action on thymic lymphoblasts. Int J Immunopharmacol. 1988;10(7):891–899. doi: 10.1016/0192-0561(88)90014-8. [DOI] [PubMed] [Google Scholar]
- Takahama Y., Singer A. Post-transcriptional regulation of early T cell development by T cell receptor signals. Science. 1992 Nov 27;258(5087):1456–1462. doi: 10.1126/science.1439838. [DOI] [PubMed] [Google Scholar]
