Skip to main content
Immunology logoLink to Immunology
. 1994 Apr;81(4):569–577.

Lytic susceptibility of target cells to cytotoxic T cells is determined by their constitutive major histocompatibility complex class I antigen expression and cytokine-induced activation status

M Ritter, C Huber, J Auböck, H Pohl-Markl, I Troppmair, M Herold, A Gächter, W Nussbaumer, G Böck, D Nachbaur, U Westhoff, B Eibl, H Schwaighofer, J Thaler, H Grosse-Wilde, D Niederwieser
PMCID: PMC1422367  PMID: 7913694

Abstract

Cytotoxic T-cell lines (TCL) were raised in vitro using stimulator cells with a defined major histocompatibility complex (MHC) mismatch and tested in a cytotoxic chromium-release assay against haemopoietic and non-haemopoietic target cells from the original stimulator. Monoclonal antibody (mAb)-blocking experiments and simultaneous determination of MHC class I, class II, lymphocyte function-associated antigen-1 (LFA-1) and intracellular adhesion molecule-1 (ICAM-1) density by quantitative radioimmunometric methods and flow cytometry on target cells demonstrated that lysis was restricted by MHC class I and dependent upon the constitutive MHC class I antigen expression. Measurements showed a high constitutive expression of class I MHC antigens on peripheral blood mononuclear cells (PBMC), but a low one on keratinocytes (K). Also, PBMC were more susceptible to lysis by TCL than K. Interferon-γ (IFN-γ) treatment of K resulted in increased MHC class I antigen expression and enhanced lytic susceptibility to TCL. IFN-α and tumour necrosis factor-α (TNF-α) treatment, which did not modulate MHC class I antigen expression on K, did not influence the amount of K lysis either. None of the cytokines tested in this analysis, however, increased the expression of MHC class I, class II, ICAM-1 and LFA-1 on PBMC. Only IFNγ pretreatment showed a minimal, statistically significant increase in MHC class I antigen expression. In spite of the minimal effect of IFN-γ and no effect of IFN-α on class I MHC expression, pretreatment of target cells with both cytokines considerably increased their lytic susceptibility. The mechanism of cytokine-induced enhanced lytic susceptibility to TCL was not explained by increased MHC class I, LFA-1 or ICAM-1 expression, since no correlation was found between surface expression of these molecules and lytic susceptibility to TCL. These data demonstrate that: (1) the constitutive density of MHC class I antigens determines the extent of TCL lysis; (2) IFN-γ, and not IFN-α or TNF-α, controls the amount of K target cell lysis by increasing their MHC class I antigen expression; and (3) IFN-γ and IFN-α control the amount of PBMC target cell lysis by a mechanism independent of MHC class I, ICAM-1 or LFA-1 expression.

Full text

PDF
569

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auböck J., Niederwieser D., Romani N., Fritsch P., Huber C. Human interferon-gamma induces expression of HLA-DR on keratinocytes and melanocytes. Arch Dermatol Res. 1985;277(4):270–275. doi: 10.1007/BF00509079. [DOI] [PubMed] [Google Scholar]
  2. Bach F. H., Bach M. L., Sondel P. M. Differential function of major histocompatibility complex antigens in T-lymphocyte activation. Nature. 1976 Jan 29;259(5541):273–281. doi: 10.1038/259273a0. [DOI] [PubMed] [Google Scholar]
  3. Bjorkman P. J., Saper M. A., Samraoui B., Bennett W. S., Strominger J. L., Wiley D. C. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature. 1987 Oct 8;329(6139):512–518. doi: 10.1038/329512a0. [DOI] [PubMed] [Google Scholar]
  4. Blackman M. J., Morris A. G. The effect of interferon treatment of targets on susceptibility to cytotoxic T-lymphocyte killing: augmentation of allogeneic killing and virus-specific killing relative to viral antigen expression. Immunology. 1985 Nov;56(3):451–457. [PMC free article] [PubMed] [Google Scholar]
  5. Bukowski J. F., Welsh R. M. Interferon enhances the susceptibility of virus-infected fibroblasts to cytotoxic T cells. J Exp Med. 1985 Jan 1;161(1):257–262. doi: 10.1084/jem.161.1.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clevers H., Alarcon B., Wileman T., Terhorst C. The T cell receptor/CD3 complex: a dynamic protein ensemble. Annu Rev Immunol. 1988;6:629–662. doi: 10.1146/annurev.iy.06.040188.003213. [DOI] [PubMed] [Google Scholar]
  7. Daar A. S., Fuggle S. V., Fabre J. W., Ting A., Morris P. J. The detailed distribution of MHC Class II antigens in normal human organs. Transplantation. 1984 Sep;38(3):293–298. doi: 10.1097/00007890-198409000-00019. [DOI] [PubMed] [Google Scholar]
  8. Dembić Z., Haas W., Weiss S., McCubrey J., Kiefer H., von Boehmer H., Steinmetz M. Transfer of specificity by murine alpha and beta T-cell receptor genes. Nature. 1986 Mar 20;320(6059):232–238. doi: 10.1038/320232a0. [DOI] [PubMed] [Google Scholar]
  9. Doxiadis I., Westhoff U., Grosse-Wilde H. Quantification of soluble HLA class I gene products by an enzyme linked immunosorbent assay. Blut. 1989 Nov;59(5):449–454. doi: 10.1007/BF00349066. [DOI] [PubMed] [Google Scholar]
  10. Dustin M. L., Rothlein R., Bhan A. K., Dinarello C. A., Springer T. A. Induction by IL 1 and interferon-gamma: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1). J Immunol. 1986 Jul 1;137(1):245–254. [PubMed] [Google Scholar]
  11. Dustin M. L., Singer K. H., Tuck D. T., Springer T. A. Adhesion of T lymphoblasts to epidermal keratinocytes is regulated by interferon gamma and is mediated by intercellular adhesion molecule 1 (ICAM-1). J Exp Med. 1988 Apr 1;167(4):1323–1340. doi: 10.1084/jem.167.4.1323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fawcett J., Holness C. L., Needham L. A., Turley H., Gatter K. C., Mason D. Y., Simmons D. L. Molecular cloning of ICAM-3, a third ligand for LFA-1, constitutively expressed on resting leukocytes. Nature. 1992 Dec 3;360(6403):481–484. doi: 10.1038/360481a0. [DOI] [PubMed] [Google Scholar]
  13. Forsum U., Claesson K., Hjelm E., Karlsson-Parra A., Klareskog L., Scheynius A., Tjernlund U. Class II transplantation antigens: distribution in tissues and involvement in disease. Scand J Immunol. 1985 May;21(5):389–396. doi: 10.1111/j.1365-3083.1985.tb01823.x. [DOI] [PubMed] [Google Scholar]
  14. Green H., Kehinde O., Thomas J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5665–5668. doi: 10.1073/pnas.76.11.5665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Greiner J. W., Horan Hand P., Wunderlich D., Colcher D. Radioimmunoassay for detection of changes in cell surface tumor antigen expression induced by interferon. Methods Enzymol. 1986;119:682–688. doi: 10.1016/0076-6879(86)19091-4. [DOI] [PubMed] [Google Scholar]
  16. Grollman E. F., Lee G., Ramos S., Lazo P. S., Kaback H. R., Friedman R. M., Kohn L. D. Relationships of the structure and function of the interferon receptor to hormone receptors and establishment of the antiviral state. Cancer Res. 1978 Nov;38(11 Pt 2):4172–4185. [PubMed] [Google Scholar]
  17. Halloran P. F., Wadgymar A., Autenried P. The regulation of expression of major histocompatibility complex products. Transplantation. 1986 Apr;41(4):413–420. [PubMed] [Google Scholar]
  18. Huber C., Merkenschlager M., Gattringer C., Royston I., Fink U., Braunsteiner H. Human autologous mixed lymphocyte reactivity is primarily specific for xenoprotein determinants adsorbed to antigen-presenting cells during rosette formation with sheep erythrocytes. J Exp Med. 1982 Apr 1;155(4):1222–1227. doi: 10.1084/jem.155.4.1222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Huhn D., Huber C., Gastl G. Large granular lymphocytes: morphological studies. Eur J Immunol. 1982 Nov;12(11):985–988. doi: 10.1002/eji.1830121118. [DOI] [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. Makgoba M. W., Sanders M. E., Ginther Luce G. E., Gugel E. A., Dustin M. L., Springer T. A., Shaw S. Functional evidence that intercellular adhesion molecule-1 (ICAM-1) is a ligand for LFA-1-dependent adhesion in T cell-mediated cytotoxicity. Eur J Immunol. 1988 Apr;18(4):637–640. doi: 10.1002/eji.1830180423. [DOI] [PubMed] [Google Scholar]
  22. Marlin S. D., Springer T. A. Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1). Cell. 1987 Dec 4;51(5):813–819. doi: 10.1016/0092-8674(87)90104-8. [DOI] [PubMed] [Google Scholar]
  23. Mierau R., Robinson P. J., Sanderson A. R., Genth E., Cramer M. Antigenic determinants shared between HLA-A, -B, -C antigens and H-2 class I molecules modified by bovine beta-2 microglobulin. Immunogenetics. 1987;26(6):351–355. doi: 10.1007/BF00343703. [DOI] [PubMed] [Google Scholar]
  24. Moingeon P. E., Lucich J. L., Stebbins C. C., Recny M. A., Wallner B. P., Koyasu S., Reinherz E. L. Complementary roles for CD2 and LFA-1 adhesion pathways during T cell activation. Eur J Immunol. 1991 Mar;21(3):605–610. doi: 10.1002/eji.1830210311. [DOI] [PubMed] [Google Scholar]
  25. Monaco J. J. A molecular model of MHC class-I-restricted antigen processing. Immunol Today. 1992 May;13(5):173–179. doi: 10.1016/0167-5699(92)90122-N. [DOI] [PubMed] [Google Scholar]
  26. Neefjes J. J., Ploegh H. L. Intracellular transport of MHC class II molecules. Immunol Today. 1992 May;13(5):179–184. doi: 10.1016/0167-5699(92)90123-O. [DOI] [PubMed] [Google Scholar]
  27. Niederwieser D., Auböck J., Troppmair J., Herold M., Schuler G., Boeck G., Lotz J., Fritsch P., Huber C. IFN-mediated induction of MHC antigen expression on human keratinocytes and its influence on in vitro alloimmune responses. J Immunol. 1988 Apr 15;140(8):2556–2564. [PubMed] [Google Scholar]
  28. Niederwieser D., Grassegger A., Auböck J., Herold M., Nachbaur D., Rosenmayr A., Gächter A., Nussbaumer W., Gaggl S., Ritter M. Correlation of minor histocompatibility antigen-specific cytotoxic T lymphocytes with graft-versus-host disease status and analyses of tissue distribution of their target antigens. Blood. 1993 Apr 15;81(8):2200–2208. [PubMed] [Google Scholar]
  29. Pfizenmaier K., Scheurich P., Schlüter C., Krönke M. Tumor necrosis factor enhances HLA-A,B,C and HLA-DR gene expression in human tumor cells. J Immunol. 1987 Feb 1;138(3):975–980. [PubMed] [Google Scholar]
  30. Pober J. S., Collins T., Gimbrone M. A., Jr, Cotran R. S., Gitlin J. D., Fiers W., Clayberger C., Krensky A. M., Burakoff S. J., Reiss C. S. Lymphocytes recognize human vascular endothelial and dermal fibroblast Ia antigens induced by recombinant immune interferon. Nature. 1983 Oct 20;305(5936):726–729. doi: 10.1038/305726a0. [DOI] [PubMed] [Google Scholar]
  31. Rothlein R., Dustin M. L., Marlin S. D., Springer T. A. A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1. J Immunol. 1986 Aug 15;137(4):1270–1274. [PubMed] [Google Scholar]
  32. Skoskiewicz M. J., Colvin R. B., Schneeberger E. E., Russell P. S. Widespread and selective induction of major histocompatibility complex-determined antigens in vivo by gamma interferon. J Exp Med. 1985 Nov 1;162(5):1645–1664. doi: 10.1084/jem.162.5.1645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Springer T. A., Dustin M. L., Kishimoto T. K., Marlin S. D. The lymphocyte function-associated LFA-1, CD2, and LFA-3 molecules: cell adhesion receptors of the immune system. Annu Rev Immunol. 1987;5:223–252. doi: 10.1146/annurev.iy.05.040187.001255. [DOI] [PubMed] [Google Scholar]
  34. Townsend A. R., Rothbard J., Gotch F. M., Bahadur G., Wraith D., McMichael A. J. The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell. 1986 Mar 28;44(6):959–968. doi: 10.1016/0092-8674(86)90019-x. [DOI] [PubMed] [Google Scholar]
  35. Troppmair J., Auböck J., Niederwieser D., Schönitzer D., Huber C. Interferons (IFNs) and tumor necrosis factors (TNFs) in T cell-mediated immune responses against alloantigens. I. Influence on the activation of resting and antigen-primed T cells. Immunobiology. 1988 Feb;176(3):236–254. doi: 10.1016/S0171-2985(88)80056-1. [DOI] [PubMed] [Google Scholar]
  36. Upadhyaya G., Guba S. C., Sih S. A., Feinberg A. P., Talpaz M., Kantarjian H. M., Deisseroth A. B., Emerson S. G. Interferon-alpha restores the deficient expression of the cytoadhesion molecule lymphocyte function antigen-3 by chronic myelogenous leukemia progenitor cells. J Clin Invest. 1991 Dec;88(6):2131–2136. doi: 10.1172/JCI115543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Vogetseder W., Feichtinger H., Schulz T. F., Schwaeble W., Tabaczewski P., Mitterer M., Böck G., Marth C., Dapunt O., Mikuz G. Expression of 7F7-antigen, a human adhesion molecule identical to intercellular adhesion molecule-1 (ICAM-1) in human carcinomas and their stromal fibroblasts. Int J Cancer. 1989 May 15;43(5):768–773. doi: 10.1002/ijc.2910430504. [DOI] [PubMed] [Google Scholar]
  38. Wallach D., Fellous M., Revel M. Preferential effect of gamma interferon on the synthesis of HLA antigens and their mRNAs in human cells. Nature. 1982 Oct 28;299(5886):833–836. doi: 10.1038/299833a0. [DOI] [PubMed] [Google Scholar]
  39. Westhoff U., Thinnes F. P., Götz H., Grosse-Wilde H. Quantitation of soluble HLA class II molecules by an enzyme-linked immunosorbent assay. Vox Sang. 1991;61(2):106–110. doi: 10.1111/j.1423-0410.1991.tb00255.x. [DOI] [PubMed] [Google Scholar]
  40. Zier K. S., Huber C., Braunsteiner H. Linear density gradient separation of human lymphocyte subsets. I. Analysis by mixed leukocyte culture and cell-mediated lympholysis responses. Eur J Immunol. 1977 Jun;7(6):366–370. doi: 10.1002/eji.1830070608. [DOI] [PubMed] [Google Scholar]
  41. Zinkernagel R. M., Doherty P. C. MHC-restricted cytotoxic T cells: studies on the biological role of polymorphic major transplantation antigens determining T-cell restriction-specificity, function, and responsiveness. Adv Immunol. 1979;27:51–177. doi: 10.1016/s0065-2776(08)60262-x. [DOI] [PubMed] [Google Scholar]
  42. Zinkernagel R. M., Doherty P. C. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature. 1974 Apr 19;248(5450):701–702. doi: 10.1038/248701a0. [DOI] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES