Skip to main content
Immunology logoLink to Immunology
. 1973 Mar;24(3):395–407.

Isolation and partial characterization of immunoglobulin from a urodele amphibian (Necturus masculosus)

J J Marchalonis, N Cohen
PMCID: PMC1422979  PMID: 4196199

Abstract

The primitive amphibian species, Necturus maculosus, a urodele, possessed serum immunoglobulin characterized by a mol. wt of approximately 900,000. Upon reduction of disulphide bonds and analysis under dissociating conditions, this molecule was resolved into polypeptide chains resembling light chains and μ-type heavy chains and having mol. wt of 22,000 and 70,000 respectively. The Necturus immunoglobulin was antigenically related to the IgM-like immunoglobulins of the toad (Bufo marinus) and the Xenopus. Unlike these anuran amphibians, however, the Necturus did not possess detectable amounts of low molecular weight immunoglobulins.

The finding raises the evolutionary possibility that the γ-like heavy chains of advanced amphibians may represent the results of a gene duplication independent of that which was responsible for the emergence of the γ heavy chain of mammals.

Full text

PDF
395

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acton R. T., Weinheimer P. F., Hall S. J., Niedermeier W., Shelton E., Bennett J. C. Tetrameric immune macroglobulins in three orders of bony fishes. Proc Natl Acad Sci U S A. 1971 Jan;68(1):107–111. doi: 10.1073/pnas.68.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Acton R. T., Weinheimer P. F., Wolcott M., Evans E. E., Bennett J. C. N-terminal sequences of immunoglobulin heavy and light chains from three species of lower vertebrates. Nature. 1970 Dec 5;228(5275):991–992. doi: 10.1038/228991a0. [DOI] [PubMed] [Google Scholar]
  3. Baldwin W. M., 3rd, Cohen N. Liver-induced immunosuppression of allograft immunity in urodele amphibians. Transplantation. 1970 Dec;10(6):530–537. doi: 10.1097/00007890-197012000-00010. [DOI] [PubMed] [Google Scholar]
  4. Bandilla K. K., McDuffie F. C., Bilgic A. K., Gleich G. J. Antigenic properties of polymeric and monomeric hemocyanin from Limulus polyphemus. Immunochemistry. 1970 Apr;7(4):383–391. doi: 10.1016/0019-2791(70)90241-7. [DOI] [PubMed] [Google Scholar]
  5. Ching Y. C., Wedgwood R. J. Immunologic responses in the axolotl, Siredon mexicanum. J Immunol. 1967 Jul;99(1):191–200. [PubMed] [Google Scholar]
  6. Clem L. W. Phylogeny of immunoglobulin structure and function. IV. Immunoglobulins of the giant grouper, Epinephelus itaira. J Biol Chem. 1971 Jan 10;246(1):9–15. [PubMed] [Google Scholar]
  7. Clem L. W., Small P. A., Jr Phylogeny of immunoglobulin structure and function. I. Immunoglobulins of the lemon shark. J Exp Med. 1967 May 1;125(5):893–920. doi: 10.1084/jem.125.5.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Diener E., Marchalonis J. Cellular and humoral aspects of the primary immune response of the toad, Bufo marinus. Immunology. 1970 Feb;18(2):279–293. [PMC free article] [PubMed] [Google Scholar]
  9. Diener E., Nossal G. J. Phylogenetic studies on the immune response. I. Localization of antigens and immune response in the toad, Bufo marinus. Immunology. 1966 Jun;10(6):535–542. [PMC free article] [PubMed] [Google Scholar]
  10. Edelman G. M., Gall W. E. The antibody problem. Annu Rev Biochem. 1969;38:415–466. doi: 10.1146/annurev.bi.38.070169.002215. [DOI] [PubMed] [Google Scholar]
  11. FLEISCHMAN J. B., PAIN R. H., PORTER R. R. Reduction of gamma-globulins. Arch Biochem Biophys. 1962 Sep;Suppl 1:174–180. [PubMed] [Google Scholar]
  12. Grey H. M. Phylogeny of immunoglobulins. Adv Immunol. 1969;10:51–104. doi: 10.1016/s0065-2776(08)60415-0. [DOI] [PubMed] [Google Scholar]
  13. HUGHES W. L., DINTZIS H. M. CRYSTALLIZATION OF THE MERCURY DIMERS OF HUMAN AND BOVINE MERCAPTALBUMIN. J Biol Chem. 1964 Mar;239:845–849. [PubMed] [Google Scholar]
  14. Hadji-Azimi I. Studies on Xenopus laevis immunoglobulins. Immunology. 1971 Sep;21(3):463–473. [PMC free article] [PubMed] [Google Scholar]
  15. KUNKEL H. G. Zone electrophoresis. Methods Biochem Anal. 1954;1:141–170. doi: 10.1002/9780470110171.ch6. [DOI] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Litman G. W., Wang A. C., Fudenberg H. H., Good R. A. N-terminal amino-acid sequence of African lungfish immunoglobulin light chains. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2321–2324. doi: 10.1073/pnas.68.10.2321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lykakis J. J. The production of two molecular classes of antibody in the toad, Xenopus laevis, homologous with mammalian gamma-M (19S) and gamma-G (7S) immunoglobulins. Immunology. 1969 Jan;16(1):91–98. [PMC free article] [PubMed] [Google Scholar]
  19. Marchalonis J. J., Allen R. B., Saarni E. S. Immunoglobulin classes of the clawed toad, Xenopus laevis. Comp Biochem Physiol. 1970 Jul 1;35(1):49–56. doi: 10.1016/0010-406x(70)90912-6. [DOI] [PubMed] [Google Scholar]
  20. Marchalonis J. J., Germain R. N. Tolerance to a protein antigen in a poikilotherm, the marine toad Bufo marinus. Nature. 1971 Jun 4;231(5301):321–322. doi: 10.1038/231321a0. [DOI] [PubMed] [Google Scholar]
  21. Marchalonis J. J. Isolation and partial characterization of immunoglobulins of goldfish (Carassius auratus) and carp (Cyprinus carpio). Immunology. 1971 Feb;20(2):161–173. [PMC free article] [PubMed] [Google Scholar]
  22. Marchalonis J. J., Schonfeld S. A. Polypeptide chain structure of sting ray immunoglobulin. Biochim Biophys Acta. 1970 Dec 22;221(3):604–611. doi: 10.1016/0005-2795(70)90232-1. [DOI] [PubMed] [Google Scholar]
  23. Marchalonis J., Edelman G. M. Phylogenetic origins of antibody structure. I. Multichain structure of immunoglobulins in the smooth dogfish (Mustelus canis). J Exp Med. 1965 Sep 1;122(3):601–618. doi: 10.1084/jem.122.3.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Marchalonis J., Edelman G. M. Polypeptide chains of immunoglobulins from the smooth dogfish (Mustelus canis). Science. 1966 Dec 23;154(3756):1567–1568. doi: 10.1126/science.154.3756.1567. [DOI] [PubMed] [Google Scholar]
  25. Morescalchi A. Hypotheses on the phylogeny of the Salientia, based on karyological data. Experientia. 1968 Sep 15;24(9):964–966. doi: 10.1007/BF02138686. [DOI] [PubMed] [Google Scholar]
  26. Neville D. M., Jr Fractionation of cell membrane protein by disc electrophoresis. Biochim Biophys Acta. 1967 Jan 18;133(1):168–170. doi: 10.1016/0005-2795(67)90051-7. [DOI] [PubMed] [Google Scholar]
  27. Parish C. R., Marchalonis J. J. A simple and rapid acrylamide gel method for estimating the molecular weights of proteins and protein subunits. Anal Biochem. 1970 Apr;34(2):436–450. doi: 10.1016/0003-2697(70)90128-4. [DOI] [PubMed] [Google Scholar]
  28. Parkhouse R. M., Askonas B. A., Dourmashkin R. R. Electron microscopic studies of mouse immunoglobulin M; structure and reconstitution following reduction. Immunology. 1970 Apr;18(4):575–584. [PMC free article] [PubMed] [Google Scholar]
  29. Suran A. A., Papermaster B. W. N-terminal sequences of heavy and light chains of leopard shark immunoglobulins: evolutionary implications. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1619–1623. doi: 10.1073/pnas.58.4.1619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Voisin G. A. Immunological facilitation, a broadening of the concept of the enhancement phenomenon. Prog Allergy. 1971;15:328–485. [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES