Skip to main content
Immunology logoLink to Immunology
. 1959 Jan;2(1):31–43.

The Mechanism of Anaphylaxis: Specificity of Antigen-Induced Mast Cell Damage in Anaphylaxis in the Guinea Pig

J H Humphrey, I Mota
PMCID: PMC1423905  PMID: 13640678

Abstract

Mast cell damage, characterized by loss of granules, occurs when the tissues of sensitized guinea pigs are brought into contact with antigen in vivo or in vitro. Quantitative studies on the mesenteries of passively sensitized guinea pigs show that the mast cell response to antigen is well correlated with the development of anaphylactic shock. After multiple sensitization contact with different antigens caused cumulative, but not complete, disappearance of mast cells.

Antigen-antibody interactions, in which antisera were from species which do not sensitize guinea pigs passively for anaphylaxis, did not cause mast cell damage.

Reversed passive anaphylaxis and mast cell damage were elicited when the antigen was a suitable γ-globulin, but not an albumin. Antiserum against homologous γ-globulin causes typical anaphylaxis and mast cell degranulation, whereas antiserum against Forssman antigen causes capillary damage without mast cell changes, and antiserum against homologous albumin is ineffective.

These findings can be explained by the hypothesis that mast cell damage occurs as a result of antigen-antibody interaction, when one of the reagents is reversibly adsorbed at the mast cell surface, and when they are together capable of activating some process or agent whose further action depends upon the metabolic integrity of the cells.

Full text

PDF
31

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adair G. S., Robinson M. E. The specific refraction increments of serum-albumin and serum-globulin. Biochem J. 1930;24(4):993–1011. doi: 10.1042/bj0240993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BECKER E. L. Concerning the mechanism of complement action. II. The nature of the first component of guinea pig complement. J Immunol. 1956 Dec;77(6):469–478. [PubMed] [Google Scholar]
  3. BENDITT E. P., WONG R. L., ARASE M., ROEPER E. 5-Hydroxytryptamine in mast cells. Proc Soc Exp Biol Med. 1955 Oct;90(1):303–304. doi: 10.3181/00379727-90-22016. [DOI] [PubMed] [Google Scholar]
  4. CARTER P. B., HIGGINBOTHAM R. D., DOUGHERTY T. F. The local response of tissue mast cells to antigen in sensitized mice. J Immunol. 1957 Sep;79(3):259–264. [PubMed] [Google Scholar]
  5. GEDIN H. I., PORATH J. Studies of zone electrophoresis in vertical columns. II. Zone electrophoresis of serum proteins. Biochim Biophys Acta. 1957 Oct;26(1):159–169. doi: 10.1016/0006-3002(57)90067-7. [DOI] [PubMed] [Google Scholar]
  6. GEDIN H. I., PORATH J. Studies of zone electrophoresis in vertical columns. II. Zone electrophoresis of serum proteins. Biochim Biophys Acta. 1957 Oct;26(1):159–169. doi: 10.1016/0006-3002(57)90067-7. [DOI] [PubMed] [Google Scholar]
  7. HUMPHREY J. H., JAQUES R. The release of histamine and 5-hydroxytryptamine (serotonin) from platelets by antigen-antibody reactions (in vitro). J Physiol. 1955 Apr 28;128(1):9–27. doi: 10.1113/jphysiol.1955.sp005289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. KUHNS W. J., PAPPENHEIMER A. M., Jr Immunochemical studies of antitoxin produced in normal and allergic individuals hyperimmunized with diphtheria toxoid. II. A comparison between the immunological properties of precipitating and non-precipitating (skin-sensitizing) antitoxins. J Exp Med. 1952 Apr;95(4):375–392. doi: 10.1084/jem.95.4.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LEDUC E. H., TANAKA N. A study of the cellular distribution of Forssman antigen in various species. J Immunol. 1956 Sep;77(3):198–212. [PubMed] [Google Scholar]
  10. MONGAR J. L., SCHILD H. O. Effect of antigen and organic bases on intracellular histamine in guinea-pig lung. J Physiol. 1956 Jan 27;131(1):207–219. doi: 10.1113/jphysiol.1956.sp005457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. MONGAR J. L., SCHILD H. O. Effect of temperature on the anaphylactic reaction. J Physiol. 1957 Feb 15;135(2):320–338. doi: 10.1113/jphysiol.1957.sp005713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. MONGAR J. L., SCHILD H. O. Effect of temperature on the anaphylactic reaction. J Physiol. 1957 Feb 15;135(2):320–338. doi: 10.1113/jphysiol.1957.sp005713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MONGAR J. L., SCHILD H. O. The effect of calcium and pH on the anaphylactic reaction. J Physiol. 1958 Feb 17;140(2):272–284. doi: 10.1113/jphysiol.1958.sp005933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MOTA I. Action of anaphylactic shock and anaphylatoxin on mast cells and histamine in rats. Br J Pharmacol Chemother. 1957 Dec;12(4):453–456. doi: 10.1111/j.1476-5381.1957.tb00164.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. MOTA I., VUGMAN I. Effects of anaphylactic shock and compound 48/80 on the mast cells of the guinea pig lung. Nature. 1956 Mar 3;177(4505):427–429. doi: 10.1038/177427a0. [DOI] [PubMed] [Google Scholar]
  16. PORTER R. R. The formation of a specific inhibitor by hydrolysis of rabbit antiovalbumin. Biochem J. 1950 Apr;46(4):479–484. doi: 10.1042/bj0460479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. RILEY J. F., WEST G. B. The presence of histamine in tissue mast cells. J Physiol. 1953 Jun 29;120(4):528–537. doi: 10.1113/jphysiol.1953.sp004915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. SJOERDSMA A., WAALKES T. P., WEISSBACH H. Serotonin and histamine in mast cells. Science. 1957 Jun 14;125(3259):1202–1203. doi: 10.1126/science.125.3259.1202. [DOI] [PubMed] [Google Scholar]
  19. WEIGLE W. O. Elimination of I131 labelled homologous and heterologous serum proteins from blood of various species. Proc Soc Exp Biol Med. 1957 Feb;94(2):306–309. doi: 10.3181/00379727-94-22930. [DOI] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES