Skip to main content
British Journal of Clinical Pharmacology logoLink to British Journal of Clinical Pharmacology
. 1982 Sep;14(3):409–414. doi: 10.1111/j.1365-2125.1982.tb02000.x

Interpretation of CO2 exhalation rate data from demethylation of aminopyrine and its metabolite monomethylaminoantipyrine.

J C Rhodes, L J Aarons, J B Houston
PMCID: PMC1427626  PMID: 6812609

Abstract

1 Aminopyrine breath tests make use of the commercially available (N-dimethyl-[14C])-aminopyrine. A pharmacokinetic model has been proposed to relate 14CO2 exhalation rates (CER) to the demethylation of ([14C]-methyl)-aminopyrine (AP) and -monomethylaminoantipyrine (MAP). 2 computer simulations based on the model show that the shape of the CER-time profile is largely dependent on the ratio of the MAP to AP elimination rate constants. If this ratio equals 0.5 then the CERs decline in the monoexponential fashion. Ratios less than 0.5 result in concave biexponential curves whereas ratios greater than 0.5 result in convex curves. When demethylation is not complete for both compounds the transfer from biexponential to monoexponential behaviour will only occur at ratios greater than 0.5. 3 The resolution of concave biexponential CER-time profiles to give accurate estimates of AP and MAP elimination rate constants can only be achieved when the length of the experiment is adequate. The commonly employed 2 microCi tracer dose of aminopyrine is insufficient to monitor CER over the necessary time period to detect the proposed biexponential decline.

Full text

PDF
409

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AEBI H., QUITT J., LAUBER E. [N-C-14-methyl-3-piperidyl)methyl]-thioxanthene HCI)]. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1963;244:477–492. [PubMed] [Google Scholar]
  2. BRODIE B. B., AXELROD J. The fate of aminopyrine (pyramidon) in man and methods for the estimation of aminopyrine and its metabolites in biological material. J Pharmacol Exp Ther. 1950 Jun;99(2):171–184. [PubMed] [Google Scholar]
  3. Bircher J., Küpfer A., Gikalov I., Preisig R. Aminopyrine demethylation measured by breath analysis in cirrhosis. Clin Pharmacol Ther. 1976 Oct;20(4):484–492. doi: 10.1002/cpt1976204484. [DOI] [PubMed] [Google Scholar]
  4. Gikalov I., Bircher J. Dose dependence of the 14C-aminopyrine breath test. Intrasubject comparison of tracer and pharmacological doses. Eur J Clin Pharmacol. 1977 Nov 14;12(3):229–233. doi: 10.1007/BF00609866. [DOI] [PubMed] [Google Scholar]
  5. Henry D. A., Sharpe G., Chaplain S., Cartwright S., Kitchingman G., Bell G. D., Langman M. J. The [14C]-aminopyrine breath test. A comparison of different forms of analysis. Br J Clin Pharmacol. 1979 Dec;8(6):539–545. doi: 10.1111/j.1365-2125.1979.tb01041.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hepner G. W., Vesell E. S. Aminopyrine disposition: studies on breath, saliva, and urine of normal subjects and patients with liver disease. Clin Pharmacol Ther. 1976 Dec;20(6):654–660. doi: 10.1002/cpt1976206654. [DOI] [PubMed] [Google Scholar]
  7. Hepner G. W., Vesell E. S. Quantitative assessment of hepatic function by breath analysis after oral administration of (14C)aminopyrine. Ann Intern Med. 1975 Nov;83(5):632–638. doi: 10.7326/0003-4819-83-5-632. [DOI] [PubMed] [Google Scholar]
  8. Houston J. B., Lockwood G. F. Aminopyrine demethylation kinetics: comparison of plasma and exhaled metabolites [proceedings]. Br J Pharmacol. 1979 Jul;66(3):429P–429P. [PMC free article] [PubMed] [Google Scholar]
  9. Houston J. B., Lockwood G. F., Taylor G. Aminopyrine demethylation kinetics. Use of metabolite exhalation rates as an index of enhanced mixed-function oxidase activity in vivo. Drug Metab Dispos. 1981 Sep-Oct;9(5):449–455. [PubMed] [Google Scholar]
  10. Lockwood G. F., Houston J. B. Amidopyrine disposition in rat. J Pharm Pharmacol. 1979 Nov;31(11):787–788. doi: 10.1111/j.2042-7158.1979.tb13661.x. [DOI] [PubMed] [Google Scholar]
  11. Lockwood G. F., Houston J. B. Influence of phenobarbitone pretreatment on disposition of amidopyrine and its metabolites in rat. J Pharm Pharmacol. 1980 Sep;32(9):619–623. doi: 10.1111/j.2042-7158.1980.tb13017.x. [DOI] [PubMed] [Google Scholar]
  12. Noordhoek J., Dees J., Savenije-Chapel E. M., Wilson J. H. Output of 14CO2 in breath after oral administration of (14C-methyl) aminopyrine in hepatitis, cirrhosis and hepatic bilharziasis: its relationship to aminopyrine pharmacokinetics. Eur J Clin Pharmacol. 1978 May 31;13(3):223–229. doi: 10.1007/BF00609987. [DOI] [PubMed] [Google Scholar]
  13. Roots I., Nigam S., Gramatzki S., Heinemeyer G., Hildebrandt A. G. Hybrid information provided by the 14C-aminopyrine breath test. Studies with 14C-monomethylaminoantipyrine in the guinea pig. Naunyn Schmiedebergs Arch Pharmacol. 1980 Aug;313(2):175–178. doi: 10.1007/BF00498577. [DOI] [PubMed] [Google Scholar]
  14. Waydhas C., Weigl K., Sies H. The disposition of formaldehyde and formate arising from drug N-demethylations dependent on cytochrome P-450 in hepatocytes and in perfused rat liver. Eur J Biochem. 1978 Aug 15;89(1):143–150. doi: 10.1111/j.1432-1033.1978.tb20906.x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Clinical Pharmacology are provided here courtesy of British Pharmacological Society

RESOURCES