Abstract
1 Diflunisal (MK-647; 5-(2,4-difluorophenyl)-salicylic acid) is a new analgesic anti-inflammatory agent discovered after an extensive chemical and pharmacological study from 1962-71.
2 In the search for a superior salicylate our objectives were higher potency, better tolerance, and a longer duration of action.
3 An evaluation of many available and newly synthesized salicylates, in the granuloma and carrageenan foot oedema assays, revealed the activity-enhancing trend of a hydrophobic group—for example, phenyl, at the carbon-5 position of salicylic acid.
4 The attachment of a 5-(4-fluorophenyl) group, previously found to enhance the potency of anti-inflammatory (3,2-c)-pyrazole steroids and phenyl-α-propionic acids to acetyl salicylic acid yielded a clinical candidate flufenisal. As an analgesic, flufenisal is two times more potent than aspirin in man, but with a longer action; no distinct advantage in gastrointestinal tolerance has, however, been observed.
5 Further investigation of 5-heteroaryl salicylic acids, flufenisal congeners and their non-acylating carbonate esters identified diflunisal and 5-(1-pyrryl)-salicylic acid for subacute safety assessment. The O-acetyl group, commonly present in aspirin, benorylate and flufenisal, was purposely avoided in these two compounds for safety considerations.
6 Without an O-acetyl group, diflunisal cannot acetylate proteins and macro-molecules in vivo as aspirin does. In the prostaglandin synthetase assay in vitro, salicylic acid is much less active than aspirin. In contrast, the non-acetylated diflunisal and desacetyl flufenisal are both more active than flufenisal in vitro. A significant difference between aspirin and diflunisal in their biochemical mechanisms was noted.
7 On the basis of overall efficacy and tolerance data, diflunisal was finally chosen as a superior analgesic anti-inflammatory salicylate for clinical evaluation.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beales D. L., Burry H. C., Grahame R. Comparison of aspirin and benorylate in the treatment of rheumatoid arthritis. Br Med J. 1972 May 27;2(5812):483–485. doi: 10.1136/bmj.2.5812.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bloomfield S. S., Barden T. P., Hille R. Clinical evaluation of flufenisal, a long-acting analgesic. Clin Pharmacol Ther. 1970 Sep-Oct;11(5):747–754. doi: 10.1002/cpt1970115747. [DOI] [PubMed] [Google Scholar]
- Brodie D. A., Tate C. L., Hooke K. F. Aspirin: intestinal damage in rats. Science. 1970 Oct 9;170(3954):183–185. doi: 10.1126/science.170.3954.183. [DOI] [PubMed] [Google Scholar]
- Hawkins D., Pinckard R. N., Farr R. S. Acetylation of human serum albumin by acetylsalicylic acid. Science. 1968 May 17;160(3829):780–781. doi: 10.1126/science.160.3829.780. [DOI] [PubMed] [Google Scholar]
- Krane S. M. Action of salicylates. N Engl J Med. 1972 Feb 10;286(6):317–318. doi: 10.1056/NEJM197202102860611. [DOI] [PubMed] [Google Scholar]
- Patrono C., Ciabattoni G., Greco F., Grossi-Belloni D. Comparative evaluation of the inhibitory effects of aspirin-like drugs on prostaglandin production by human platelets and synovial tissue. Adv Prostaglandin Thromboxane Res. 1976;1:125–131. [PubMed] [Google Scholar]
- Roth G. J., Stanford N., Majerus P. W. Acetylation of prostaglandin synthase by aspirin. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3073–3076. doi: 10.1073/pnas.72.8.3073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STRACHAN R., STEINBERG N. G., TISHLER M., HIRSCHMANN R. SYNTHESIS OF 2'-(2,4-DIFLUOROPHENYL )-11-BETA, 17,21-TRIHYDROXY-6,16-ALPHA-DIMETHYL-20-OXOPREGNA-4,6-DIENO(3,2-C) PYRAZOLE. J Med Chem. 1964 May;7:355–355. doi: 10.1021/jm00333a024. [DOI] [PubMed] [Google Scholar]
- Shen T. Y. Perspectives in nonsteroidal anti-inflammatory agents. Angew Chem Int Ed Engl. 1972 Jun;11(6):460–472. doi: 10.1002/anie.197204601. [DOI] [PubMed] [Google Scholar]
- Stone C. A., Van Arman C. G., Lotti V. J., Minsker D. H., Risley E. A., Bagdon W. J., Bokelman D. L., Jensen R. D., Mendlowski B., Tate C. L. Pharmacology and toxicology of diflunisal. Br J Clin Pharmacol. 1977 Feb;4 (Suppl 1):19S–29S. doi: 10.1111/j.1365-2125.1977.tb04510.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tocco D. J., Breault G. O., Zacchei A. G., Steelman S. L., Perrier C. V. Physiological disposition and metabolism of 5-(2',4'-difluorophenyl)salicyclic acid, a new salicylate. Drug Metab Dispos. 1975 Nov-Dec;3(6):453–466. [PubMed] [Google Scholar]
- Vane J. R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol. 1971 Jun 23;231(25):232–235. doi: 10.1038/newbio231232a0. [DOI] [PubMed] [Google Scholar]
- WINTER C. A., RISLEY E. A., NUSS G. W. ANTI-INFLAMMATORY AND ANTIPYRETIC ACTIVITIES OF INDOMETHACIN, 1-(P-CHLOROBENZOYL)-5-METHOXY-2-METHYLINDOLE-3-ACETIC ACID. J Pharmacol Exp Ther. 1963 Sep;141:369–376. [PubMed] [Google Scholar]
- Walford G. L., Jones H., Shen T. Y. Aza analogs of 5-(p-fluorophenyl)salicylic acid. J Med Chem. 1971 Apr;14(4):339–344. doi: 10.1021/jm00286a017. [DOI] [PubMed] [Google Scholar]
- Walker J. R., Smith M. J., Ford-Hutchinson A. W. Anti-inflammatory drugs, prostaglandins and leucocyte migration. Agents Actions. 1976 Sep;6(5):602–606. doi: 10.1007/BF01971577. [DOI] [PubMed] [Google Scholar]
- von Kaulla K. N., Ens G. On structure-related properties of synthetic organic clot-dissolving (thrombolytic) compounds. Biochem Pharmacol. 1967 Jun;16(6):1023–1034. doi: 10.1016/0006-2952(67)90275-4. [DOI] [PubMed] [Google Scholar]