Skip to main content
British Journal of Clinical Pharmacology logoLink to British Journal of Clinical Pharmacology
. 1978 Mar;5(3):199–206. doi: 10.1111/j.1365-2125.1978.tb01624.x

Desensitization of the beta-adrenoceptor of lymphocytes from normal subjects and asthmatic patients in vitro.

J K Greenacre, P Schofield, M E Conolly
PMCID: PMC1429258  PMID: 207294

Abstract

1 A lymphocyte culture method has been developed for studying in vitro the effect of prolonged exposure (24 h) to isoprenaline (10(-8) to 10(-6) mol/l) and prostaglandin E1 (PGE1; 2.8 x 10(-6) mol/l). 2 The cyclic AMP response to isoprenaline is reduced by prolonged exposure to isoprenaline. The degree of desensitization is in proportion to the concentration of isoprenaline in the culture medium. 3 Culture with isoprenaline does not reduce the cyclic AMP response to PGE1. 4 Culture for 24 h with PGE1 (2.8 x 10(-6) mol/l) reduces the cyclic AMP response to PGE1. It also significantly reduces the response to isoprenaline. 5 Lymphocytes from asthmatic patients show a similar degree of desensitization to isoprenaline (after 24 h culture with isoprenaline) to that seen in lymphocytes from normal subjects. 6 A modified assay for phosphodiesterase (PDE) activity was developed. PDE activity increased 24.5% (P less than 0.02) after culture with PGE1 but was not significantly affected by culture with isoprenaline. 7 It is concluded that desensitization caused by prolonged exposure to various stimulators of adenylate cyclase is an event dependent on several components, not all of which are yet defined.

Full text

PDF
199

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alston W. C., Patel K. R., Kerr J. W. Response of leucocyte adenyl cyclase to isoprenaline and effect of alpha-blocking drugs in extrinsic bronchial asthma. Br Med J. 1974 Jan 19;1(5898):90–93. doi: 10.1136/bmj.1.5898.90. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bourne H. R., Tomkins G. M., Dion S. Regulation of phosphodiesterase synthesis: requirement for cyclic adenosine monophosphate-dependent protein kinase. Science. 1973 Sep 7;181(4103):952–954. doi: 10.1126/science.181.4103.952. [DOI] [PubMed] [Google Scholar]
  3. Browning E. T., Brostrom C. O., Groppi V. E., Jr Altered adenosine cyclic 3',5'-monophosphate synthesis and degradation by C-6 astrocytoma cells following prolonged exposure to norepinephrine. Mol Pharmacol. 1976 Jan;12(1):32–40. [PubMed] [Google Scholar]
  4. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
  5. Conolly M. E., Davies D. S., Dollery C. T., George C. F. Resistance to -adrenoceptor stimulants (a possible explanation for the rise in ashtma deaths). Br J Pharmacol. 1971 Oct;43(2):389–402. [PMC free article] [PubMed] [Google Scholar]
  6. Conolly M. E., Greenacre J. K. The beta-adrenoceptor of the human lymphocyte and human lung parenchyma. Br J Pharmacol. 1977 Jan;59(1):17–23. doi: 10.1111/j.1476-5381.1977.tb06971.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Conolly M. E., Greenacre J. K. The lymphocyte beta-adrenoceptor in normal subjects and patients with bronchial asthma: the effect of different forms of treatment on receptor function. J Clin Invest. 1976 Dec;58(6):1307–1316. doi: 10.1172/JCI108586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DeRubertis F. R., Craven P. Reduced sensitivity of the hepatic adenylate cyclase-cyclic AMP system to glucagon during sustained hormonal stimulation. J Clin Invest. 1976 Feb;57(2):435–443. doi: 10.1172/JCI108294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Franklin T. J., Foster S. J. Hormone-induced desensitisation of hormonal control of cyclic AMP levels in human diploid fibroblasts. Nat New Biol. 1973 Dec 5;246(153):146–148. doi: 10.1038/newbio246146a0. [DOI] [PubMed] [Google Scholar]
  10. Gillespie E., Valentine M. D., Lichtenstein L. M. Cyclic AMP metabolism in asthma: studies with leukocytes and lymphocytes. J Allergy Clin Immunol. 1974 Jan;53(1):27–33. doi: 10.1016/0091-6749(74)90096-7. [DOI] [PubMed] [Google Scholar]
  11. Gilman A. G. A protein binding assay for adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1970 Sep;67(1):305–312. doi: 10.1073/pnas.67.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ho R. J., Sutherland E. W. Formation and release of a hormone antagonist by rat adipocytes. J Biol Chem. 1971 Nov 25;246(22):6822–6827. [PubMed] [Google Scholar]
  13. Logsdon P. J., Middleton E., Jr, Coffey R. G. Stimulation of leukocyte adenyl cyclase by hydrocortisone and isoproterenol in asthmatic and nonasthmatic subjects. J Allergy Clin Immunol. 1972 Jul;50(1):45–56. doi: 10.1016/0091-6749(72)90078-4. [DOI] [PubMed] [Google Scholar]
  14. Maganiello V., Vaughan M. Prostaglandin E 1 effects on adenosine 3':5'-cyclic monophosphate concentration and phosphodiesterase activity in fibroblasts (mouse L cells-tissue culture-enzyme kinetics-prostaglandin homologues). Proc Natl Acad Sci U S A. 1972 Jan;69(1):269–273. doi: 10.1073/pnas.69.1.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mukherjee C., Caron M. G., Lefkowitz R. J. Catecholamine-induced subsensitivity of adenylate cyclase associated with loss of beta-adrenergic receptor binding sites. Proc Natl Acad Sci U S A. 1975 May;72(5):1945–1949. doi: 10.1073/pnas.72.5.1945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Parker C. W., Smith J. W. Alterations in cyclic adenosine monophosphate metabolism in human bronchial asthma. I. Leukocyte responsiveness to -adrenergic agents. J Clin Invest. 1973 Jan;52(1):48–59. doi: 10.1172/JCI107173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Romero J. A., Zatz M., Kebabian J. W., Axelrod J. Circadian cycles in binding of 3H-alprenolol to beta-adrenergic receptor sites in rat pineal. Nature. 1975 Dec 4;258(5534):435–436. doi: 10.1038/258435a0. [DOI] [PubMed] [Google Scholar]
  18. Russell T. R., Pastan I. H. Cyclic adenosine 3':5'-monophosphate and cyclic guanosine 3':5'-monophosphate phosphodiesterase activities are under separate genetic control. J Biol Chem. 1974 Dec 25;249(24):7764–7769. [PubMed] [Google Scholar]
  19. Schwartz J. P., Passonneau J. V. Cyclic AMP-mediated induction of the cyclic AMP phosphodiesterase of C-6 glioma cells. Proc Natl Acad Sci U S A. 1974 Oct;71(10):3844–3848. doi: 10.1073/pnas.71.10.3844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Thompson W. J., Appleman M. M. Multiple cyclic nucleotide phosphodiesterase activities from rat brain. Biochemistry. 1971 Jan 19;10(2):311–316. [PubMed] [Google Scholar]

Articles from British Journal of Clinical Pharmacology are provided here courtesy of British Pharmacological Society

RESOURCES