Skip to main content
Gut logoLink to Gut
. 1984 Oct;25(10):1034–1043. doi: 10.1136/gut.25.10.1034

Splanchnic and renal elimination and release of catecholamines in cirrhosis. Evidence of enhanced sympathetic nervous activity in patients with decompensated cirrhosis.

J H Henriksen, H Ring-Larsen, I L Kanstrup, N J Christensen
PMCID: PMC1432557  PMID: 6479678

Abstract

Plasma noradrenaline (NA) and adrenaline (A) concentrations were determined in different vascular areas in 32 patients with cirrhosis and in nine controls during a right sided heart, liver, and renal vein catheterisation. The patients were divided into four groups: (I) Compensated (without ascites); (II) Recompensated on diuretic treatment because of former ascites; (III) Decompensated (with ascites) without treatment and (IV) Decompensated on diuretic treatment. Median arterial noradrenaline concentrations were 1.48, 1.07, 2.66, 4.14 and 2.50 nmol/l in controls, group I, II, III, and IV, respectively, the three last mentioned values being significantly raised (p less than 0.01). Median arterial adrenaline concentrations were not significantly increased. In patients arterial-hepatic venous extraction ratios of noradrenaline and adrenaline were on the average 25% (p less than 0.01) and 20% (p less than 0.02) less than those of the controls, indicating a slightly reduced splanchnic elimination of catecholamines in cirrhoses. In controls and group I significant renal venous-arterial noradrenaline differences were absent (0.00 and 0.03 nmol/l) while renal venous-arterial noradrenaline differences were significantly increased in groups II, III and IV (0.47, 0.53 and 0.68 nmol/l, p less than 0.01), indicating a significant net release of noradrenaline from the kidneys in recompensated and decompensated patients. Renal extraction of adrenaline was normal. In conclusion, increased arterial noradrenaline in decompensated and recompensated cirrhosis is only to a limited extent owing to reduced net splanchnic elimination. More likely the increase is caused by release of noradrenaline from the kidneys and possibly other organs indicating enhanced sympathetic nervous tone in these conditions.

Full text

PDF
1034

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arroyo V., Planas R., Gaya J., Deulofeu R., Rimola A., Pérez-Ayuso R. M., Rivera F., Rodés J. Sympathetic nervous activity, renin-angiotensin system and renal excretion of prostaglandin E2 in cirrhosis. Relationship to functional renal failure and sodium and water excretion. Eur J Clin Invest. 1983 Jun;13(3):271–278. doi: 10.1111/j.1365-2362.1983.tb00100.x. [DOI] [PubMed] [Google Scholar]
  2. Bello-Reuss E. Effect of catecholamines on fluid reabsorption by the isolated proximal convoluted tubule. Am J Physiol. 1980 May;238(5):F347–F352. doi: 10.1152/ajprenal.1980.238.5.F347. [DOI] [PubMed] [Google Scholar]
  3. Bernardi M., Trevisani F., Santini C., Zoli G., Baraldini M., Ligabue A., Gasbarrini G. Plasma norepinephrine, weak neurotransmitters, and renin activity during active tilting in liver cirrhosis: relationship with cardiovascular homeostasis and renal function. Hepatology. 1983 Jan-Feb;3(1):56–64. doi: 10.1002/hep.1840030109. [DOI] [PubMed] [Google Scholar]
  4. Bichet D. G., Van Putten V. J., Schrier R. W. Potential role of increased sympathetic activity in impaired sodium and water excretion in cirrhosis. N Engl J Med. 1982 Dec 16;307(25):1552–1557. doi: 10.1056/NEJM198212163072504. [DOI] [PubMed] [Google Scholar]
  5. Christensen N. J. Plasma noradrenaline and adrenaline measured by isotope-derivative assay. A review with special reference to diabetes mellitus. Dan Med Bull. 1979 Feb;26(1):17–36. [PubMed] [Google Scholar]
  6. Christensen N. J., Vestergaard P., Sørensen T., Rafaelsen O. J. Cerebrospinal fluid adrenaline and noradrenaline in depressed patients. Acta Psychiatr Scand. 1980 Feb;61(2):178–182. doi: 10.1111/j.1600-0447.1980.tb00577.x. [DOI] [PubMed] [Google Scholar]
  7. DiBona G. F. Neurogenic regulation of renal tubular sodium reabsorption. Am J Physiol. 1977 Aug;233(2):F73–F81. doi: 10.1152/ajprenal.1977.233.2.F73. [DOI] [PubMed] [Google Scholar]
  8. Engelman K., Portnoy B. A sensitive double-isotope derivative assay for norepinephrine and epinephrine. Normal resting human plasma levels. Circ Res. 1970 Jan;26(1):53–57. doi: 10.1161/01.res.26.1.53. [DOI] [PubMed] [Google Scholar]
  9. Henriksen J. H., Christensen N. J., Kok-Jensen A., Christiansen I. Increased plasma noradrenaline concentration in patients with chronic obstructive lung disease: relation to haemodynamics and blood gases. Scand J Clin Lab Invest. 1980 Sep;40(5):419–427. doi: 10.3109/00365518009101864. [DOI] [PubMed] [Google Scholar]
  10. Henriksen J. H., Christensen N. J., Ring-Larsen H. Noradrenaline and adrenaline concentrations in various vascular beds in patients with cirrhosis. Relation to haemodynamics. Clin Physiol. 1981 Jun;1(3):293–304. doi: 10.1111/j.1475-097x.1981.tb00898.x. [DOI] [PubMed] [Google Scholar]
  11. Henriksen J. H. Variability of hydrostatic hepatic vein and ascitic fluid pressure, and of plasma and ascitic fluid colloid osmotic pressure in patients with liver cirrhosis. Scand J Clin Lab Invest. 1980 Oct;40(6):515–522. doi: 10.3109/00365518009091958. [DOI] [PubMed] [Google Scholar]
  12. Hilsted J., Christensen N. J., Madsbad S. Whole body clearance of norepinephrine. The significance of arterial sampling and of surgical stress. J Clin Invest. 1983 Mar;71(3):500–505. doi: 10.1172/JCI110794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. KONTOS H. A., SHAPIRO W., MAUCK H. P., PATTERSON J. L., Jr GENERAL AND REGIONAL CIRCULATORY ALTERATIONS IN CIRRHOSIS OF THE LIVER. Am J Med. 1964 Oct;37:526–535. doi: 10.1016/0002-9343(64)90066-x. [DOI] [PubMed] [Google Scholar]
  14. KOPIN I. J. Technique for the study of alternate metabolic pathways: epinephrine metabolism in man. Science. 1960 May 6;131(3410):1372–1374. doi: 10.1126/science.131.3410.1372. [DOI] [PubMed] [Google Scholar]
  15. Lieberman F. L., Reynolds T. B. Plasma volume in cirrhosis of the liver: its relation of portal hypertension, ascites, and renal failure. J Clin Invest. 1967 Aug;46(8):1297–1308. doi: 10.1172/JCI105622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. MURRAY J. F., DAWSON A. M., SHERLOCK S. Circulatory changes in chronic liver disease. Am J Med. 1958 Mar;24(3):358–367. doi: 10.1016/0002-9343(58)90322-x. [DOI] [PubMed] [Google Scholar]
  17. Manhem P., Lecerof H., Hökfelt B. Plasma catecholamine levels in the coronary sinus, the left renal vein and peripheral vessels in healthy males at rest and during exercise. Acta Physiol Scand. 1978 Nov;104(3):364–369. doi: 10.1111/j.1748-1716.1978.tb06288.x. [DOI] [PubMed] [Google Scholar]
  18. Oliver J. A., Pinto J., Sciacca R. R., Cannon P. J. Basal norepinephrine overflow into the renal vein: effect of renal nerve stimulation. Am J Physiol. 1980 Oct;239(4):F371–F377. doi: 10.1152/ajprenal.1980.239.4.F371. [DOI] [PubMed] [Google Scholar]
  19. Reinhardt H. W., Eisele R., Kaczmarczyk G., Mohnhaupt R., Oelkers W., Schimmrich B. The control of sodium excretion by reflexes from the low pressure system independent of adrenal activity. Experiments on conscious dogs. Pflugers Arch. 1980 Mar;384(2):171–176. doi: 10.1007/BF00584435. [DOI] [PubMed] [Google Scholar]
  20. Ring-Larsen H., Hesse B., Henriksen J. H., Christensen N. J. Sympathetic nervous activity and renal and systemic hemodynamics in cirrhosis: plasma norepinephrine concentration, hepatic extraction, and renal release. Hepatology. 1982 May-Jun;2(3):304–310. doi: 10.1002/hep.1840020303. [DOI] [PubMed] [Google Scholar]
  21. Ring-Larsen H. Renal blood flow in cirrhosis: relation to systemic and portal haemodynamics and liver function. Scand J Clin Lab Invest. 1977 Nov;37(7):635–642. doi: 10.3109/00365517709100657. [DOI] [PubMed] [Google Scholar]
  22. TYGSTRUP N. Determination of the hepatic galactose elimination capacity after a single intravenous injection in man: the reproducibility and the influence of uneven distribution. Acta Physiol Scand. 1963 Jun-Jul;58:162–172. doi: 10.1111/j.1748-1716.1963.tb02638.x. [DOI] [PubMed] [Google Scholar]
  23. Unger T., Buu N. T., Kuchel O. Renal handling of free and conjugated catecholamines following surgical stress in the dog. Am J Physiol. 1978 Dec;235(6):F542–F547. doi: 10.1152/ajprenal.1978.235.6.F542. [DOI] [PubMed] [Google Scholar]
  24. WINKLER K., TYGSTRUP N. Determination of hepatic blood flow in man by cardio green. Scand J Clin Lab Invest. 1960;12:353–356. doi: 10.3109/00365516009062449. [DOI] [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES