Abstract
The chemotactic migration in vitro of peripheral blood, intestinal mucosal, and mesenteric lymph node mononuclear cells has been assessed in patients with colorectal carcinoma. Peripheral blood mononuclear cells of patients exhibited normal chemotaxis. For control patients with non-malignant, non-inflammatory intestinal disease, the chemotaxis of mucosal mononuclear cells was similar to that of autologous peripheral blood mononuclear cells. The chemotactic migration of mucosal mononuclear cells, however, isolated distant from a colon cancer was less than that of autologous peripheral blood mononuclear cells. Chemotactic migration was progressively impaired with increasing closeness to the tumour itself. Chemotaxis of mucosal mononuclear cell was independent of the site of tumour and the Dukes' grading. Mononuclear cells from mesenteric lymph nodes, however, exhibited impaired migration only in patients with Dukes' C tumours. Supernatants of the collagenase digestion of either tumour or adjacent mucosa contained macrophage directed inhibitors of chemotaxis and these inhibitors were not produced by tumour mononuclear cells. The presence of such inhibitors in the digestion supernatants and the demonstration that proximity to the tumour was associated with impaired mononuclear cell motility suggest that the production of macrophage directed chemotactic inhibitors is by colon cancer cells and that this may be occurring in vivo.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexander P. The functions of the macrophage in malignant disease. Annu Rev Med. 1976;27:207–224. doi: 10.1146/annurev.me.27.020176.001231. [DOI] [PubMed] [Google Scholar]
- BOYDEN S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med. 1962 Mar 1;115:453–466. doi: 10.1084/jem.115.3.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bull D. M., Bookman M. A. Isolation and functional characterization of human intestinal mucosal lymphoid cells. J Clin Invest. 1977 May;59(5):966–974. doi: 10.1172/JCI108719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cianciolo G. J., Lostrom M. E., Tam M., Snyderman R. Murine malignant cells synthesize a 19,000-dalton protein that is physicochemically and antigenically related to the immunosuppressive retroviral protein, P15E. J Exp Med. 1983 Sep 1;158(3):885–900. doi: 10.1084/jem.158.3.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cianciolo G., Hunter J., Silva J., Haskill J. S., Snyderman R. Inhibitors of monocyte responses to chemotaxins are present in human cancerous effusions and react with monoclonal antibodies to the P15(E) structural protein of retroviruses. J Clin Invest. 1981 Oct;68(4):831–844. doi: 10.1172/JCI110338. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eccles S. A., Alexander P. Sequestration of macrophages in growing tumours and its effect on the immunological capacity of the host. Br J Cancer. 1974 Jul;30(1):42–49. doi: 10.1038/bjc.1974.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibson P. R., Verhaar H. J., Selby W. S., Jewell D. P. The mononuclear cells of human mesenteric blood, intestinal mucosa and mesenteric lymph nodes: compartmentalization of NK cells. Clin Exp Immunol. 1984 May;56(2):445–452. [PMC free article] [PubMed] [Google Scholar]
- Halliday W. J., Koppi T. A., Khan J. M., Davis N. C. Leukocyte adherence inhibition: tumor specificity of cellular and serum-blocking reactions in human melanoma, breast cancer, and colorectal cancer. J Natl Cancer Inst. 1980 Aug;65(2):327–335. [PubMed] [Google Scholar]
- Hesse D. G., Cole D. J., Van Epps D. E., Williams R. C., Jr Decreased T lymphocyte migration in patients with malignancy mediated by a suppressor cell population. J Clin Invest. 1984 Apr;73(4):1078–1085. doi: 10.1172/JCI111293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li C. Y., Yam L. T., Crosby W. H. Histochemical characterization of cellular and structural elements of the human spleen. J Histochem Cytochem. 1972 Dec;20(12):1049–1058. doi: 10.1177/20.12.1049. [DOI] [PubMed] [Google Scholar]
- Norman S. J., Sorkin E. Cell-specific defect in monocyte function during tumor growth. J Natl Cancer Inst. 1976 Jul;57(1):135–140. doi: 10.1093/jnci/57.1.135. [DOI] [PubMed] [Google Scholar]
- Snyderman R., Meadows L., Amos D. B. Characterization of human chemotactic lymphokine production induced by mitogens and mixed leukocyte reactions using a new microassay. Cell Immunol. 1977 May;30(2):225–235. doi: 10.1016/0008-8749(77)90067-3. [DOI] [PubMed] [Google Scholar]
- Snyderman R., Pike M. C. An inhibitor of macrophage chemotaxis produced by neoplasms. Science. 1976 Apr 23;192(4237):370–372. doi: 10.1126/science.946556. [DOI] [PubMed] [Google Scholar]
- Snyderman R., Pike M. C., Blaylock B. L., Weinstein P. Effects of neoplasms on inflammation: depression of macrophage accumulation after tumor implantation. J Immunol. 1976 Mar;116(3):585–589. [PubMed] [Google Scholar]
- Stevenson M. M., Meltzer M. S. Depressed chemotactic responses in vitro of peritoneal macrophages from tumor-bearing mice. J Natl Cancer Inst. 1976 Oct;57(4):847–852. doi: 10.1093/jnci/57.4.847. [DOI] [PubMed] [Google Scholar]
- Woods A. E., Papadimitriou J. M. The effect of inflammatory stimuli on the stroma of neoplasms: the involvement of mononuclear phagocytes. J Pathol. 1977 Nov;123(3):165–174. doi: 10.1002/path.1711230306. [DOI] [PubMed] [Google Scholar]
- Zigmond S. H., Hirsch J. G. Leukocyte locomotion and chemotaxis. New methods for evaluation, and demonstration of a cell-derived chemotactic factor. J Exp Med. 1973 Feb 1;137(2):387–410. doi: 10.1084/jem.137.2.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
