Abstract
Mucosal loperamide caused a dose dependent reduction in the absorption of actively transported hexoses and amino acids, together with the associated rise in short circuit current. Na+ and fluid movement were also inhibited. Serosal application of the drug was without effect on these processes. The passive movement of fructose across the gut was not affected by loperamide which is therefore unlikely to act by reducing tissue permeability. In low Na+ conditions the inhibitory actions of loperamide on glycine absorption were reduced. Loperamide reduced basal Na+ transport although it did not affect the stimulation of Na+ absorption caused by mannose. Loperamide had no effect on the total ATPase activity nor on the Na+, K+-ATPase activity of mucosal homogenates. The effects of loperamide were not mimicked by morphine nor were they antagonised by naloxone and hence do not seem to involve an opiate receptor. It is concluded that loperamide exerts its inhibitory effects by an interaction with the Na+ sites of the nutrient carriers.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen R. J. The estimation of phosphorus. Biochem J. 1940 Jun;34(6):858–865. doi: 10.1042/bj0340858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barry R. J., Eggenton J., Smyth D. H. Sodium pumps in the rat small intestine in relation to hexose transfer and metabolism. J Physiol. 1969 Oct;204(2):299–310. doi: 10.1113/jphysiol.1969.sp008914. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beubler E., Lembeck F. Inhibition of stimulated fluid secretion in the rat small and large intestine by opiate agonists. Naunyn Schmiedebergs Arch Pharmacol. 1979 Mar;306(2):113–118. doi: 10.1007/BF00498980. [DOI] [PubMed] [Google Scholar]
- Binder H. J. Mechanisms underlying the absorption of water and ions. Int Rev Physiol. 1977;12:285–304. [PubMed] [Google Scholar]
- Chang K. J., Cuatrecasas P. Multiple opiate receptors. Enkephalins and morphine bind to receptors of different specificity. J Biol Chem. 1979 Apr 25;254(8):2610–2618. [PubMed] [Google Scholar]
- Coupar I. M. Inhibition by morphine of prostaglandin-stimulated fluid secretion in rat jejunum. Br J Pharmacol. 1978 May;63(1):57–63. doi: 10.1111/j.1476-5381.1978.tb07774.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farack U. M., Kautz U., Loeschke K. Loperamide reduces the intestinal secretion but not the mucosal cAMP accumulation induced by choleratoxin. Naunyn Schmiedebergs Arch Pharmacol. 1981 Sep;317(2):178–179. doi: 10.1007/BF00500077. [DOI] [PubMed] [Google Scholar]
- Field M., Fromm D., McColl I. Ion transport in rabbit ileal mucosa. I. Na and Cl fluxes and short-circuit current. Am J Physiol. 1971 May;220(5):1388–1396. doi: 10.1152/ajplegacy.1971.220.5.1388. [DOI] [PubMed] [Google Scholar]
- Fogel R., Kaplan R. B. Role of enkephalins in regulation of basal intestinal water and ion absorption in the rat. Am J Physiol. 1984 Apr;246(4 Pt 1):G386–G392. doi: 10.1152/ajpgi.1984.246.4.G386. [DOI] [PubMed] [Google Scholar]
- Frizzell R. A., Schultz S. G. Models of electrolyte absorption and secretion by gastrointestinal epithelia. Int Rev Physiol. 1979;19:205–225. [PubMed] [Google Scholar]
- Hardcastle J., Hardcastle P. T., Read N. W., Redfern J. S. The action of loperamide in inhibiting prostaglandin-induced intestinal secretion in the rat. Br J Pharmacol. 1981 Nov;74(3):563–569. doi: 10.1111/j.1476-5381.1981.tb10465.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hughes S., Higgs N. B., Turnberg L. A. Antidiarrhoeal activity of loperamide: studies of its influence on ion transport across rabbit ileal mucosa in vitro. Gut. 1982 Nov;23(11):974–979. doi: 10.1136/gut.23.11.974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Im W. B., Misch D. W., Powell D. W., Faust R. G. Phenolphthalein- and harmaline-induced disturbances in the transport functions of isolated brush border and basolateral membrane vesicles from rat jejunum and kidney cortex. Biochem Pharmacol. 1980 Sep 1;29(17):2307–2317. doi: 10.1016/0006-2952(80)90263-4. [DOI] [PubMed] [Google Scholar]
- Jorgensen P. L. Techniques for the study of steroid effects on membraneous (Na+ plus K+)--ATPase. Methods Enzymol. 1975;36:434–439. [PubMed] [Google Scholar]
- Kachur J. F., Miller R. J., Field M. Control of guinea pig intestinal electrolyte secretion by a delta-opiate receptor. Proc Natl Acad Sci U S A. 1980 May;77(5):2753–2756. doi: 10.1073/pnas.77.5.2753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lord J. A., Waterfield A. A., Hughes J., Kosterlitz H. W. Endogenous opioid peptides: multiple agonists and receptors. Nature. 1977 Jun 9;267(5611):495–499. doi: 10.1038/267495a0. [DOI] [PubMed] [Google Scholar]
- Mercier J., Dessaigne S., Menguy A., Manez J. Electro-encephalographic study on the action of the combination meprobamate-aceprometazine on various cerebral systems. Arzneimittelforschung. 1974 Feb;24(2):163–166. [PubMed] [Google Scholar]
- SCHULTZ S. G., ZALUSKY R. INTERACTIONS BETWEEN ACTIVE SODIUM TRANSPORT AND ACTIVE AMINO-ACID TRANSPORT IN ISOLATED RABBIT ILEUM. Nature. 1965 Jan 16;205:292–294. doi: 10.1038/205292a0. [DOI] [PubMed] [Google Scholar]
- SCHULTZ S. G., ZALUSKY R. ION TRANSPORT IN ISOLATED RABBIT ILEUM. II. THE INTERACTION BETWEEN ACTIVE SODIUM AND ACTIVE SUGAR TRANSPORT. J Gen Physiol. 1964 Jul;47:1043–1059. doi: 10.1085/jgp.47.6.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandhu B. K., Tripp J. H., Candy D. C., Harries J. T. Loperamide: studies on its mechanism of action. Gut. 1981 Aug;22(8):658–662. doi: 10.1136/gut.22.8.658. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schiller L. R., Santa Ana C. A., Morawski S. G., Fordtran J. S. Mechanism of the antidiarrheal effect of loperamide. Gastroenterology. 1984 Jun;86(6):1475–1480. [PubMed] [Google Scholar]
- Schultz S. G., Curran P. F. Coupled transport of sodium and organic solutes. Physiol Rev. 1970 Oct;50(4):637–718. doi: 10.1152/physrev.1970.50.4.637. [DOI] [PubMed] [Google Scholar]
- Verhaeren E. H., Dreessen M. J., Lemli J. A. Influence of 1,8-dihydroxyanthraquinone and loperamide on the paracellular permeability across colonic mucosa. J Pharm Pharmacol. 1981 Aug;33(8):526–528. doi: 10.1111/j.2042-7158.1981.tb13852.x. [DOI] [PubMed] [Google Scholar]
- WILSON T. H., WISEMAN G. The use of sacs of everted small intestine for the study of the transference of substances from the mucosal to the serosal surface. J Physiol. 1954 Jan;123(1):116–125. doi: 10.1113/jphysiol.1954.sp005036. [DOI] [PMC free article] [PubMed] [Google Scholar]
