Skip to main content
Gut logoLink to Gut
. 1986 May;27(5):521–527. doi: 10.1136/gut.27.5.521

Lactose digestion by human jejunal biopsies: the relationship between hydrolysis and absorption.

D J Dawson, R W Lobley, P C Burrows, V Miller, R Holmes
PMCID: PMC1433508  PMID: 3084346

Abstract

The relationship between lactose hydrolysis and absorption of released glucose was investigated by determining the kinetics of lactose digestion by jejunal biopsies incubated in vitro. Lactase activity in intact biopsies correlated with conventional assay of tissue homogenates (r = 0.85, p less than 0.001), and glucose uptake from 28 mM lactose was directly proportional to lactase activity (r = 0.95, p less than 0.001) in 21 subjects with normal lactase levels, six with hypolactasia (primary or secondary to coeliac disease) and two with lactose intolerance but normal lactase activity. Kinetic analysis at 0.56-56 mM lactose in five normal subjects showed saturable kinetics for hydrolysis (app Km = 33.9 +/- 2.2 mM; app Vmax = 26.5 +/- 1.1 nmol/min/mg dry weight) but glucose uptake could be fitted to a model either of saturable uptake (app Kt = 47.2 +/- 0.3 mM; app Jmax = 14.1 +/- 0.2 nmol/min/mg) or saturable uptake plus a linear component (app Kt = 21.3 +/- 1.15; app Jmax = 4.59 +/- 0.12; app Kd = 0.093 +/- 0.010 nmol/min/mg/mM). The proportion of glucose taken into the tissue did not significantly exceed 50% of the total released at any lactose concentration suggesting the lack of an efficient capture mechanism for the released glucose. The results suggest that lactose hydrolysis is the rate limiting step in the overall absorption of glucose from lactose in vitro, and that the relationship between hydrolysis and absorption is the same in normal subjects and in hypolactasic subjects.

Full text

PDF
521

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beck I. T., Da Costa L. R., Beck M. Sugar absorption by small bowel biopsy samples from patients with primary lactase deficiency and with adult celiac disease. Am J Dig Dis. 1976 Nov;21(11):946–952. doi: 10.1007/BF01071905. [DOI] [PubMed] [Google Scholar]
  2. Brown T. I., Rack P. M., Ross H. F. A range of different stretch reflex responses in the human thumb. J Physiol. 1982 Nov;332:101–112. doi: 10.1113/jphysiol.1982.sp014403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Böhlen P., Stein S., Dairman W., Udenfriend S. Fluorometric assay of proteins in the nanogram range. Arch Biochem Biophys. 1973 Mar;155(1):213–220. doi: 10.1016/s0003-9861(73)80023-2. [DOI] [PubMed] [Google Scholar]
  4. Dahlqvist A. Assay of intestinal disaccharidases. Anal Biochem. 1968 Jan;22(1):99–107. doi: 10.1016/0003-2697(68)90263-7. [DOI] [PubMed] [Google Scholar]
  5. Debnam E. S., Levin R. J. An experimental method of identifying and quantifying the active transfer electrogenic component from the diffusive component during sugar absorption measured in vivo. J Physiol. 1975 Mar;246(1):181–196. doi: 10.1113/jphysiol.1975.sp010885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Elsas L. J., Hillman R. E., Patterson J. H., Rosenberg L. E. Renal and intestinal hexose transport in familial glucose-galactose malabsorption. J Clin Invest. 1970 Mar;49(3):576–585. doi: 10.1172/JCI106268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gardner M. L., Atkins G. L. Kinetic analysis of transport processes in the intestine and other tissues. Clin Sci (Lond) 1982 Nov;63(5):405–414. doi: 10.1042/cs0630405. [DOI] [PubMed] [Google Scholar]
  8. Grasset E., Heyman M., Dumontier A. M., Lestradet H., Desjeux J. F. Possible sodium and D-glucose cotransport in isolated jejunal epithelium of children. Pediatr Res. 1979 Nov;13(11):1240–1246. doi: 10.1203/00006450-197911000-00008. [DOI] [PubMed] [Google Scholar]
  9. Gray G. M., Santiago N. A. Disaccharide absorption in normal and diseased human intestine. Gastroenterology. 1966 Oct;51(4):489–498. [PubMed] [Google Scholar]
  10. Harrison M., Walker-Smith J. A. Reinvestigation of lactose intolerant children: lack of correlation between continuing lactose intolerance and small intestinal morphology, disaccharidase activity, and lactose tolerance tests. Gut. 1977 Jan;18(1):48–52. doi: 10.1136/gut.18.1.48. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lherminier M., Alvarado F. Virtual elimination of the interference of unstirred water layers on intestinal sugar transport kinetics by use of the tissue accumulation method at appropriate shaking rates. Pflugers Arch. 1981 Jan;389(2):155–158. doi: 10.1007/BF00582107. [DOI] [PubMed] [Google Scholar]
  12. London D. R., Cuatrecasas P., Birge S. J., Jr, Segal S. Metabolism of lactose by intestinal mucosa from normal and lactase-deficient subjects. Br Med J. 1967 Mar 4;1(5539):524–526. doi: 10.1136/bmj.1.5539.524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McMichael H. B., Webb J., Dawson A. M. The absorption of maltose and lactose in man. Clin Sci. 1967 Aug;33(1):135–145. [PubMed] [Google Scholar]
  14. Newcomer A. D., McGill D. B. Lactose tolerance tests in adults with normal lactase activity. Gastroenterology. 1966 Mar;50(3):340–346. [PubMed] [Google Scholar]
  15. Parson D. S., Prichard J. S. Relationships between disaccharide hydrolysis and sugar transport in amphibian small intestine. J Physiol. 1971 Jan;212(2):299–319. doi: 10.1113/jphysiol.1971.sp009326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sandle G. I., Lobley R. W., Holmes R. Maltose hydrolysis and absorption in the human jejunum. Digestion. 1982;24(3):137–145. doi: 10.1159/000198789. [DOI] [PubMed] [Google Scholar]
  17. Skovbjerg H., Sjöström H., Norén O. Purification and characterisation of amphiphilic lactase/phlorizin hydrolase from human small intestine. Eur J Biochem. 1981 Mar;114(3):653–661. doi: 10.1111/j.1432-1033.1981.tb05193.x. [DOI] [PubMed] [Google Scholar]
  18. Stirling C. E., Schneider A. J., Wong M. D., Kinter W. B. Quantitative radioautography of sugar transport in intestinal biopsies from normal humans and a patient with glucose-galactose malabsorption. J Clin Invest. 1972 Feb;51(2):438–451. doi: 10.1172/JCI106830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Thomson A. B., Weinstein W. M. Transport kinetics of D-glucose in human small intestinal mucosa: rate constants in histologically normal and abnormal mucosal biopsies. Dig Dis Sci. 1979 Jun;24(6):442–448. doi: 10.1007/BF01299825. [DOI] [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES