Abstract
Low luminal acid concentrations stimulate alkaline secretion (AS) by the duodenal mucosa. We investigated acid stimulated alkaline secretion by proximal rabbit duodenal mucosa in an Ussing-chamber under different luminal acid concentrations and its relation to mucosal damage. Luminal alkalinisation and potential difference (PD) were measured and mucosal damage was investigated histologically. Luminal acid caused an increase of alkaline secretion over baseline (0.95 +/- 0.19 mu Eq/cm2/10 min; n = 55): 0.1 mmol: 7%, 1 mmol/l: 17%, 5 mmol/l: 22%, 10 mmol/l: 33%, 20 mmol/l: 34%, 50 mmol: 39%, 100 mmol/l: 27%. At acid concentrations of 10 mmol/l and above the PD fell from 2.0 +/- 1.0 mV to zero. Histology showed [H+]-dependent mucosal damage ranging from villus tip lesions to deep mucosal injury. Stimulation of alkaline secretion was not specific for acid. Ethanol (14%) stimulated alkaline secretion by 26%, and 28% ethanol by 40% over baseline. Ouabain and/or anoxia sensitive (active) alkaline secretion constituted 80% and 100% respectively of basal alkaline secretion. After exposure to various luminal acid concentrations passive diffusion (sensitive only to removal of nutrient HCO3-) was solely responsible for the rise in alkaline secretion. Only after 14% ethanol a small rise in ouabain and/or anoxia sensitive HCO3- transport was observed. Under the conditions of this study stimulation of duodenal alkaline secretion is not specific for luminal acid, but occurs also with luminal ethanol; both agents stimulate alkaline secretion depending on their concentration. In this model passive diffusion of HCO3- associated with increasing mucosal damage is the major component of the rise in alkaline secretion.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Flemstrom G., Garner A. Gastroduodenal HCO3(-) transport: characteristics and proposed role in acidity regulation and mucosal protection. Am J Physiol. 1982 Mar;242(3):G183–G193. doi: 10.1152/ajpgi.1982.242.3.G183. [DOI] [PubMed] [Google Scholar]
- Flemström G., Garner A., Nylander O., Hurst B. C., Heylings J. R. Surface epithelial HCO3(-) transport by mammalian duodenum in vivo. Am J Physiol. 1982 Nov;243(5):G348–G358. doi: 10.1152/ajpgi.1982.243.5.G348. [DOI] [PubMed] [Google Scholar]
- Flemström G., Heylings J. R., Garner A. Gastric and duodenal HCO3- transport in vitro: effects of hormones and local transmitters. Am J Physiol. 1982 Feb;242(2):G100–G110. doi: 10.1152/ajpgi.1982.242.2.G100. [DOI] [PubMed] [Google Scholar]
- Heylings J. R., Garner A., Flemström G. Regulation of gastroduodenal HCO-3 transport by luminal acid in the frog in vitro. Am J Physiol. 1984 Mar;246(3 Pt 1):G235–G242. doi: 10.1152/ajpgi.1984.246.3.G235. [DOI] [PubMed] [Google Scholar]
- Heylings J. R., Garner A. Influence of luminal acidification on bicarbonate transport by gastric and duodenal isolated mucosae. Prostaglandins. 1981;21 (Suppl):67–71. doi: 10.1016/0090-6980(81)90120-9. [DOI] [PubMed] [Google Scholar]
- Isenberg J. I., Hogan D. L., Koss M. A., Selling J. A. Human duodenal mucosal bicarbonate secretion. Evidence for basal secretion and stimulation by hydrochloric acid and a synthetic prostaglandin E1 analogue. Gastroenterology. 1986 Aug;91(2):370–378. [PubMed] [Google Scholar]
- Isenberg J. I., Smedfors B., Johansson C. Effect of graded doses of intraluminal H+, prostaglandin E2, and inhibition of endogenous prostaglandin synthesis on proximal duodenal bicarbonate secretion in unanesthetized rat. Gastroenterology. 1985 Jan;88(1 Pt 2):303–307. doi: 10.1016/s0016-5085(85)80184-0. [DOI] [PubMed] [Google Scholar]
- Konturek S. J., Bilski J., Tasler J., Laskiewicz J. Gastroduodenal alkaline response to acid and taurocholate in conscious dogs. Am J Physiol. 1984 Aug;247(2 Pt 1):G149–G154. doi: 10.1152/ajpgi.1984.247.2.G149. [DOI] [PubMed] [Google Scholar]
- Simson J. N., Merhav A., Silen W. Alkaline secretion by amphibian duodenum. I. General characteristics. Am J Physiol. 1981 May;240(5):G401–G408. doi: 10.1152/ajpgi.1981.240.5.G401. [DOI] [PubMed] [Google Scholar]
- Sjöstrand S. E., Ryberg B., Olbe L. Analysis of the actions of cimetidine and metiamide on gastric acid secretion in the isolated guinea pig gastric mucosa. Naunyn Schmiedebergs Arch Pharmacol. 1977 Jan;296(2):139–142. doi: 10.1007/BF00508465. [DOI] [PubMed] [Google Scholar]
- Smith P. L., Cascairo M. A., Sullivan S. K. Sodium dependence of luminal alkalinization by rabbit ileal mucosa. Am J Physiol. 1985 Sep;249(3 Pt 1):G358–G368. doi: 10.1152/ajpgi.1985.249.3.G358. [DOI] [PubMed] [Google Scholar]
- Svanes K., Ito S., Takeuchi K., Silen W. Restitution of the surface epithelium of the in vitro frog gastric mucosa after damage with hyperosmolar sodium chloride. Morphologic and physiologic characteristics. Gastroenterology. 1982 Jun;82(6):1409–1426. [PubMed] [Google Scholar]
- Wenzl E., Feil W., Starlinger M., Schiessel R. Alkaline secretion. A protective mechanism against acid injury in rabbit duodenum. Gastroenterology. 1987 Mar;92(3):709–715. [PubMed] [Google Scholar]


