Skip to main content
Gut logoLink to Gut
. 1988 Nov;29(11):1549–1556. doi: 10.1136/gut.29.11.1549

GABA immunoreactivity and 3H-GABA uptake in mucosal epithelial cells of the rat stomach.

K R Jessen 1, J M Hills 1, A R Limbrick 1
PMCID: PMC1433825  PMID: 3209112

Abstract

GABA, best known as a neurotransmitter in the central nervous system, is also present in various peripheral tissues including the gastrointestinal tract, where there is strong evidence that GABA acts as a transmitter in some intrinsic myenteric neurones. Several studies indicate that the gastric mucosa is one of the sites of action of GABA in the gut. Highly specific anti-GABA antibodies have been used to detect endogenous GABA in the mucosa of the rat gastrointestinal tract, and 3H-GABA uptake followed by autoradiography has been used to localise cells with uptake sites for exogenous GABA. It was found that although GABA immunoreactive nerve fibres are essentially absent from this site, some mucosal cells are strongly GABA-immunoreactive. These cells are common in the pyloric stomach and upper part of the small intestine. The autoradiographic experiments provide evidence that these cells also possess high-affinity GABA uptake sites. These observations raise the possibility that in the gastrointestinal tract GABA acts as a gut hormone in a subpopulation of mucosal endocrine cells, in addition to its role as an enteric neurotransmitter.

Full text

PDF
1549

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cooke H. J. Neurobiology of the intestinal mucosa. Gastroenterology. 1986 Apr;90(4):1057–1081. doi: 10.1016/0016-5085(86)90889-9. [DOI] [PubMed] [Google Scholar]
  2. Davanger S., Ottersen O. P., Storm-Mathisen J. Immunocytochemical localization of GABA in cat myenteric plexus. Neurosci Lett. 1987 Jan 2;73(1):27–32. doi: 10.1016/0304-3940(87)90025-5. [DOI] [PubMed] [Google Scholar]
  3. Harty R. F., Franklin P. A. GABA affects the release of gastrin and somatostatin from rat antral mucosa. Nature. 1983 Jun 16;303(5918):623–624. doi: 10.1038/303623a0. [DOI] [PubMed] [Google Scholar]
  4. Hills J. M., Jessen K. R., Mirsky R. An immunohistochemical study of the distribution of enteric GABA-containing neurons in the rat and guinea-pig intestine. Neuroscience. 1987 Jul;22(1):301–312. doi: 10.1016/0306-4522(87)90220-x. [DOI] [PubMed] [Google Scholar]
  5. Hodgson A. J., Penke B., Erdei A., Chubb I. W., Somogyi P. Antisera to gamma-aminobutyric acid. I. Production and characterization using a new model system. J Histochem Cytochem. 1985 Mar;33(3):229–239. doi: 10.1177/33.3.3973378. [DOI] [PubMed] [Google Scholar]
  6. Jessen K. R., Hills J. M., Saffrey M. J. Immunohistochemical demonstration of GABAergic neurons in the enteric nervous system. J Neurosci. 1986 Jun;6(6):1628–1634. doi: 10.1523/JNEUROSCI.06-06-01628.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jessen K. R., Mirsky R., Dennison M. E., Burnstock G. GABA may be a neurotransmitter in the vertebrate peripheral nervous system. Nature. 1979 Sep 6;281(5726):71–74. doi: 10.1038/281071a0. [DOI] [PubMed] [Google Scholar]
  8. Kenny S. L., Ariano M. A. The immunofluorescence localization of glutamate decarboxylase in the rat superior cervical ganglion. J Auton Nerv Syst. 1986 Nov;17(3):211–215. doi: 10.1016/0165-1838(86)90058-5. [DOI] [PubMed] [Google Scholar]
  9. Kisvárday Z. F., Cowey A., Hodgson A. J., Somogyi P. The relationship between GABA immunoreactivity and labelling by local uptake of [3H]GABA in the striate cortex of monkey. Exp Brain Res. 1986;62(1):89–98. doi: 10.1007/BF00237405. [DOI] [PubMed] [Google Scholar]
  10. Neale E. A., Oertel W. H., Bowers L. M., Weise V. K. Glutamate decarboxylase immunoreactivity and gamma-[3H] aminobutyric acid accumulation within the same neurons in dissociated cell cultures of cerebral cortex. J Neurosci. 1983 Feb;3(2):376–382. doi: 10.1523/JNEUROSCI.03-02-00376.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Somogyi P., Hodgson A. J. Antisera to gamma-aminobutyric acid. III. Demonstration of GABA in Golgi-impregnated neurons and in conventional electron microscopic sections of cat striate cortex. J Histochem Cytochem. 1985 Mar;33(3):249–257. doi: 10.1177/33.3.2579124. [DOI] [PubMed] [Google Scholar]
  12. Somogyi P., Hodgson A. J., Chubb I. W., Penke B., Erdei A. Antisera to gamma-aminobutyric acid. II. Immunocytochemical application to the central nervous system. J Histochem Cytochem. 1985 Mar;33(3):240–248. doi: 10.1177/33.3.2579123. [DOI] [PubMed] [Google Scholar]
  13. Taniyama K., Miki Y., Kusunoki M., Saito N., Tanaka C. Release of endogenous and labeled GABA from isolated guinea pig ileum. Am J Physiol. 1983 Nov;245(5 Pt 1):G717–G721. doi: 10.1152/ajpgi.1983.245.5.G717. [DOI] [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES