Abstract
The effect of jejunal bypass on pancreatic growth and plasma cholecystokinin (CCK) was investigated in rats. Rats underwent bypass of jejunum or sham operation. Rats with jejunal bypass were further divided into three groups; one group received a continuous infusion of a partially hydrolysed liquid diet (Vital) into the bypassed jejunum; a second group received the nutrient solution mixed with trypsin and infused into the bypassed jejunum; the third bypass group did not receive infusion of nutrient or trypsin into the jejunum. Jejunal bypass alone did not significantly stimulate pancreatic growth or DNA content at one or two weeks postoperative. Infusion of nutrient solution into the bypassed jejunum stimulated pancreatic growth and DNA content, with maximal increases of 185% and 181% for pancreatic weight and DNA content, respectively, at two weeks. This coincided with significant increases in postabsorptive plasma CCK concentrations. Infusion of pancreatic proteases into the bypassed jejunum partially reversed the effects of nutrient infusion. These results suggest that exclusion of bile-pancreatic juice or pancreatic proteases from the jejunum does not lead to maximal release of CCK unless the jejunum receives luminal nutrients. It is proposed that CCK release from rat jejunum occurs spontaneously in the absence of pancreatic proteases, and that luminal nutrients in bypassed jejunum increase plasma CCK and stimulate pancreatic growth by maintaining synthesis of CCK.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Green G. M., Lyman R. L. Feedback regulation of pancreatic enzyme secretion as a mechanism for trypsin inhibitor-induced hypersecretion in rats. Proc Soc Exp Biol Med. 1972 May;140(1):6–12. doi: 10.3181/00379727-140-36384. [DOI] [PubMed] [Google Scholar]
- Green G. M., Nasset E. S. Importance of bile in regulation of intraluminal proteolytic enzyme activities in the rat. Gastroenterology. 1980 Oct;79(4):695–702. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Levan V. H., Green G. M. Effect of diversion of bile-pancreatic juice to the ileum on pancreatic secretion and adaptation in the rat. Proc Soc Exp Biol Med. 1986 Jan;181(1):139–143. doi: 10.3181/00379727-181-42235. [DOI] [PubMed] [Google Scholar]
- Liddle R. A., Goldfine I. D., Williams J. A. Bioassay of plasma cholecystokinin in rats: effects of food, trypsin inhibitor, and alcohol. Gastroenterology. 1984 Sep;87(3):542–549. [PubMed] [Google Scholar]
- Liddle R. A., Green G. M., Conrad C. K., Williams J. A. Proteins but not amino acids, carbohydrates, or fats stimulate cholecystokinin secretion in the rat. Am J Physiol. 1986 Aug;251(2 Pt 1):G243–G248. doi: 10.1152/ajpgi.1986.251.2.G243. [DOI] [PubMed] [Google Scholar]
- Louie D. S., May D., Miller P., Owyang C. Cholecystokinin mediates feedback regulation of pancreatic enzyme secretion in rats. Am J Physiol. 1986 Feb;250(2 Pt 1):G252–G259. doi: 10.1152/ajpgi.1986.250.2.G252. [DOI] [PubMed] [Google Scholar]
- Mainz D. L., Black O., Webster P. D. Hormonal control of pancreatic growth. J Clin Invest. 1973 Sep;52(9):2300–2304. doi: 10.1172/JCI107418. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miyasaka K., Green G. M. Effect of partial exclusion of pancreatic juice on rat basal pancreatic secretion. Gastroenterology. 1984 Jan;86(1):114–119. [PubMed] [Google Scholar]
- Schneeman B. O., Lyman R. L. Factors involved in the intestinal feedback regulation of pancreatic enzyme secretion in the rat. Proc Soc Exp Biol Med. 1975 Mar;148(3):897–903. doi: 10.3181/00379727-148-38656. [DOI] [PubMed] [Google Scholar]
- VOLKIN E., COHN W. E. Estimation of nucleic acids. Methods Biochem Anal. 1954;1:287–305. doi: 10.1002/9780470110171.ch11. [DOI] [PubMed] [Google Scholar]