Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1983 Nov;44(2):285–288. doi: 10.1016/S0006-3495(83)84301-X

Length dependence of rate constants for end-to-end association and dissociation of equilibrium linear aggregates.

T L Hill
PMCID: PMC1434825  PMID: 6652219

Abstract

A semi-quantitative analysis is given of the length dependence of the rate constant for association (annealing) of two long linear aggregates in solution. The equilibrium constant for this process, or its inverse (fragmentation or dissociation), is relatively easy to formulate from appropriate partition functions. From these two ingredients, the length dependence of the rate constant for spontaneous fragmentation can be deduced. Numerical examples are included.

Full text

PDF
285

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Hill T. L. Bioenergetic aspects and polymer length distribution in steady-state head-to-tail polymerization of actin or microtubules. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4803–4807. doi: 10.1073/pnas.77.8.4803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hill T. L. Diffusion frequency factors in some simple examples of transition-state rate theory. Proc Natl Acad Sci U S A. 1976 Mar;73(3):679–683. doi: 10.1073/pnas.73.3.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hill T. L. Effect of rotation on the diffusion-controlled rate of ligand-protein association. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4918–4922. doi: 10.1073/pnas.72.12.4918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hill T. L., Kirschner M. W. Bioenergetics and kinetics of microtubule and actin filament assembly-disassembly. Int Rev Cytol. 1982;78:1–125. [PubMed] [Google Scholar]
  5. Hill T. L. Steady-state head-to-tail polymerization of actin or microtubules. II. Two-state and three-state kinetic cycles. Biophys J. 1981 Mar;33(3):353–371. doi: 10.1016/S0006-3495(81)84900-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kondo H., Ishiwata S. Uni-directional growth of F-actin. J Biochem. 1976 Jan;79(1):159–171. doi: 10.1093/oxfordjournals.jbchem.a131043. [DOI] [PubMed] [Google Scholar]
  7. Nakaoka Y., Kasai M. Behaviour of sonicated actin polymers: adenosine triphosphate splitting and polymerization. J Mol Biol. 1969 Sep 14;44(2):319–332. doi: 10.1016/0022-2836(69)90178-8. [DOI] [PubMed] [Google Scholar]
  8. Wegner A., Savko P. Fragmentation of actin filaments. Biochemistry. 1982 Apr 13;21(8):1909–1913. doi: 10.1021/bi00537a032. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES