Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1984 Mar;45(3):491–494. doi: 10.1016/S0006-3495(84)84184-3

Water permeability through biological membranes by isotopic effects of fluorescence and light scattering.

R Lawaczeck
PMCID: PMC1434871  PMID: 6546887

Abstract

A light-scattering technique used to measure the water permeability across closed biomembranes is described, which is based on the different indices of refraction of D2O and H2O. This transient technique is compared with a similar method using D2O-sensitive fluorophores in the intravesicular space. The results of both techniques are equivalent although the signal-to-noise ratio favors the light-scattering or turbidity experiment. The light-scattering method is only applicable to larger particles (no point-scatterers) and is easily extended to biological objects. Data on the H2O/D2O exchange across membranes of ghosts from human erythrocytes suggest two mechanisms: the D2O and H2O permeation through the membrane and a slower D2O-induced conformational change of membraneous proteins.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTON T. C., BROWN D. A. WATER PERMEABILITY OF THE FETAL ERYTHROCYTE. J Gen Physiol. 1964 May;47:839–849. doi: 10.1085/jgp.47.5.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blum R. M., Forster R. E. The water permeability of erythrocytes. Biochim Biophys Acta. 1970 Jun 2;203(3):410–423. doi: 10.1016/0005-2736(70)90181-1. [DOI] [PubMed] [Google Scholar]
  3. Brahm J. Diffusional water permeability of human erythrocytes and their ghosts. J Gen Physiol. 1982 May;79(5):791–819. doi: 10.1085/jgp.79.5.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brink P. R. Effect of deuterium oxide on junctional membrane channel permeability. J Membr Biol. 1983;71(1-2):79–87. doi: 10.1007/BF01870676. [DOI] [PubMed] [Google Scholar]
  5. Conlon T., Outhred R. Water diffusion permeability of erythrocytes using an NMR technique. Biochim Biophys Acta. 1972 Nov 2;288(2):354–361. doi: 10.1016/0005-2736(72)90256-8. [DOI] [PubMed] [Google Scholar]
  6. Coster H. G., Laver D. R., Schoenborn B. P. Effect of 2H2O/H2O replacement on the dielectric structure of lipid bilayer membranes. Biochim Biophys Acta. 1982 Mar 23;686(1):141–143. doi: 10.1016/0005-2736(82)90161-4. [DOI] [PubMed] [Google Scholar]
  7. Eisinger J., Boens N., Flores J. Fluorescence polarization study of human erythrocyte membranes with 1-phenyl-3-(2-naphthyl)-2-pyrazoline as orientational probe. Biochim Biophys Acta. 1981 Aug 20;646(2):334–343. doi: 10.1016/0005-2736(81)90340-0. [DOI] [PubMed] [Google Scholar]
  8. Fabry M. E., Eisenstadt M. Water exchange across red cell membranes: II. Measurements by nuclear magnetic resonance T1, T2, and T12 hybrid relaxation. The effects of osmolarity, cell volume, and medium. J Membr Biol. 1978 Sep 25;42(4):375–398. doi: 10.1007/BF01870357. [DOI] [PubMed] [Google Scholar]
  9. Kasai M., Kanemasa T., Fukumoto S. Determination of reflection coefficients for various ions and neutral molecules in sarcoplasmic reticulum vesicles through osmotic volume change studied by stopped flow technique. J Membr Biol. 1979 Dec 31;51(3-4):311–324. doi: 10.1007/BF01869089. [DOI] [PubMed] [Google Scholar]
  10. Kutchai H., Huxley V. H., Chandler L. H. Determination of fluorescence polarization of membrane probes in intact erythrocytes. Possible scattering artifacts. Biophys J. 1982 Aug;39(2):229–232. doi: 10.1016/S0006-3495(82)84512-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lawaczeck R., Kainosho M., Chan S. I. The formation and annealing of structural defects in lipid bilayer vesicles. Biochim Biophys Acta. 1976 Sep 7;443(3):313–330. doi: 10.1016/0005-2736(76)90032-8. [DOI] [PubMed] [Google Scholar]
  12. Levin S. W., Levin R. L., Solomon A. K., Pandiscio A., Kirkwood D. H. Improved stop-flow apparatus to measure permeability of human red cells and ghosts. J Biochem Biophys Methods. 1980 Nov;3(5):255–272. doi: 10.1016/0165-022x(80)90007-x. [DOI] [PubMed] [Google Scholar]
  13. Levitt D. G., Mlekoday H. J. Reflection coefficient and permeability of urea and ethylene glycol in the human red cell membrane. J Gen Physiol. 1983 Feb;81(2):239–253. doi: 10.1085/jgp.81.2.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Morariu V. V., Benga G. Evaluation of a nuclear magnetic resonance technique for the study of water exchange through erythrocyte membranes in normal and pathological subjects. Biochim Biophys Acta. 1977 Sep 19;469(3):301–310. doi: 10.1016/0005-2736(77)90166-3. [DOI] [PubMed] [Google Scholar]
  15. Osberghaus U., Schönert H., Deuticke B. A simple technique of measuring high membrane permeabilities of human erythrocytes. J Membr Biol. 1982;68(1):29–35. doi: 10.1007/BF01872251. [DOI] [PubMed] [Google Scholar]
  16. Owen J. D., Bennion B. C., Holmes L. P., Eyring E. M., Berg M. W., Lords J. L. Temperature jump relaxations in aqueous saline suspensions of human erythrocytes. Biochim Biophys Acta. 1970 Mar 17;203(1):77–82. doi: 10.1016/0005-2736(70)90037-4. [DOI] [PubMed] [Google Scholar]
  17. PAGANELLI C. V., SOLOMON A. K. The rate of exchange of tritiated water across the human red cell membrane. J Gen Physiol. 1957 Nov 20;41(2):259–277. doi: 10.1085/jgp.41.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Polefka T. G., Garrick R. A., Redwood W. R. Osmotic permeability of Novikoff hepatoma cells. Biochim Biophys Acta. 1981 Mar 20;642(1):79–87. doi: 10.1016/0005-2736(81)90139-5. [DOI] [PubMed] [Google Scholar]
  19. SIDEL V. W., SOLOMON A. K. Entrance of water into human red cells under an osmotic pressure gradient. J Gen Physiol. 1957 Nov 20;41(2):243–257. doi: 10.1085/jgp.41.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sha'afi R. I., Rich G. T., Sidel V. W., Bossert W., Solomon A. K. The effect of the unstirred layer on human red cell water permeability. J Gen Physiol. 1967 May;50(5):1377–1399. doi: 10.1085/jgp.50.5.1377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Small W. C., Goldstein J. H. The effect of changing extracellular osmolality on water transport in the human red blood cell as measured by the cell water residence time and the activation energy of water transport. Biochim Biophys Acta. 1981 Jan 22;640(2):430–438. doi: 10.1016/0005-2736(81)90468-5. [DOI] [PubMed] [Google Scholar]
  22. Steck T. L., Kant J. A. Preparation of impermeable ghosts and inside-out vesicles from human erythrocyte membranes. Methods Enzymol. 1974;31:172–180. doi: 10.1016/0076-6879(74)31019-1. [DOI] [PubMed] [Google Scholar]
  23. Sze H., Solomon A. K. Permeability of human erythrocyte membrane vesicles to alkali cations. Biochim Biophys Acta. 1979 Feb 2;550(3):393–406. doi: 10.1016/0005-2736(79)90144-5. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES