Abstract
Measurements of the dimensions and membrane rotational frequency of individual erythrocytes steadily tank-treading in a rheoscope are used to deduce the surface shear viscosity of the membrane. The method is based on an integral energy principle which says that the power supplied to the tank-treading cell by the suspending fluid is equal to the rate at which energy is dissipated by viscous action in the membrane and cytoplasm. The integrals involved are formulated with the aid of an idealized mathematical model of the tank-treading red blood cell (RBC) (Keller and Skalak, 1982, J. Fluid Mech., 120:24-27) and evaluated numerically. The outcome is a surface-averaged value of membrane viscosity which is representative of a finite interval of membrane shear rate. The numerical values computed show a clear shear-thinning characteristic as well as a significant augmentation of viscosity with cell age and tend toward agreement with those determined for the rapid phase of shape recovery in micropipettes (Chien, S., K.-L. P. Sung, R. Skalak, S. Usami, and A. Tozeren, 1978, Biophys. J., 24:463-487). The computations also indicate that the rate of energy dissipation in the membrane is always substantially greater than that in the cytoplasm.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bessis M., Mohandas N., Feo C. Automated ektacytometry: a new method of measuring red cell deformability and red cell indices. Blood Cells. 1980;6(3):315–327. [PubMed] [Google Scholar]
- Chien S., Sung K. L., Skalak R., Usami S., Tözeren A. Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane. Biophys J. 1978 Nov;24(2):463–487. doi: 10.1016/S0006-3495(78)85395-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chien S., Sung K. L., Skalak R., Usami S., Tözeren A. Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane. Biophys J. 1978 Nov;24(2):463–487. doi: 10.1016/S0006-3495(78)85395-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fischer T. M. On the energy dissipation in a tank-treading human red blood cell. Biophys J. 1980 Nov;32(2):863–868. doi: 10.1016/S0006-3495(80)85022-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laczkó J., Feó C. J., Phillips W. Discocyte--echinocyte reversibility in blood stored in CPD over a period of 56 days. Transfusion. 1979 Jul-Aug;19(4):379–388. doi: 10.1046/j.1537-2995.1979.19479250174.x. [DOI] [PubMed] [Google Scholar]
- Linderkamp O., Meiselman H. J. Geometric, osmotic, and membrane mechanical properties of density-separated human red cells. Blood. 1982 Jun;59(6):1121–1127. [PubMed] [Google Scholar]
- Nash G. B., Wyard S. J. Changes in surface area and volume measured by micropipette aspiration for erythrocytes ageing in vivo. Biorheology. 1980;17(5-6):479–484. [PubMed] [Google Scholar]
- Ross P. D., Minton A. P. Hard quasispherical model for the viscosity of hemoglobin solutions. Biochem Biophys Res Commun. 1977 Jun 20;76(4):971–976. doi: 10.1016/0006-291x(77)90950-0. [DOI] [PubMed] [Google Scholar]
- Schmid-Schönbein H., von Gosen J., Heinich L., Klose H. J., Volger E. A counter-rotating "rheoscope chamber" for the study of the microrheology of blood cell aggregation by microscopic observation and microphotometry. Microvasc Res. 1973 Nov;6(3):366–376. doi: 10.1016/0026-2862(73)90086-1. [DOI] [PubMed] [Google Scholar]
- Sutera S. P., Tran Son Tay R. Mathematical model of the velocity field external to a tank-treading red cell. Biorheology. 1983;20(3):267–282. doi: 10.3233/bir-1983-20302. [DOI] [PubMed] [Google Scholar]
- Sutera S. P., Tran-Son-Tay R., Boylan C. W., Williamson J. R., Gardner R. A. A study of variance in measurements of tank-treading frequency in populations of normal human red cells. Blood Cells. 1983;9(3):485–499. [PubMed] [Google Scholar]