Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1984 Jul;46(1):45–56. doi: 10.1016/S0006-3495(84)83997-1

Analysis of time-resolved fluorescence anisotropy decays.

A J Cross, G R Fleming
PMCID: PMC1434942  PMID: 6743756

Abstract

We discuss the analysis of time-correlated single photon counting measurements of fluorescence anisotropy. Particular attention was paid to the statistical properties of the data. The methods used previously to analyze these experiments were examined and a new method was proposed in which parallel- and perpendicular-polarized fluorescence curves were fit simultaneously. The new method takes full advantage of the statistical properties of the measured curves; and, in some cases, it is shown to be more sensitive than other methods to systematic errors present in the data. Examples were presented using experimental and simulated data. The influence of fitting range on extracted parameters and statistical criteria for evaluating the quality of fits are also discussed.

Full text

PDF
45

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashikawa I., Kinosita K., Jr, Ikegami A., Nishimura Y., Tsuboi M., Watanabe K., Iso K. Dynamics of DNA in chromatin and DNA binding mode to core protein. J Biochem. 1983 Feb;93(2):665–668. doi: 10.1093/oxfordjournals.jbchem.a134223. [DOI] [PubMed] [Google Scholar]
  2. Badea M. G., Brand L. Time-resolved fluorescence measurements. Methods Enzymol. 1979;61:378–425. doi: 10.1016/0076-6879(79)61019-4. [DOI] [PubMed] [Google Scholar]
  3. Badea M. G., DeToma R. P., Brand L. Nanosecond relaxation processes in liposomes. Biophys J. 1978 Oct;24(1):197–212. doi: 10.1016/S0006-3495(78)85356-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Belford G. G., Belford R. L., Weber G. Dynamics of fluorescence polarization in macromolecules. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1392–1393. doi: 10.1073/pnas.69.6.1392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chang M. C., Cross A. J., Fleming G. R. Internal dynamics and overall motion of lysozyme studied by fluorescence depolarization of the eosin lysozyme complex. J Biomol Struct Dyn. 1983 Oct;1(1):299–318. doi: 10.1080/07391102.1983.10507441. [DOI] [PubMed] [Google Scholar]
  6. Chen L. A., Dale R. E., Roth S., Brand L. Nanosecond time-dependent fluorescence depolarization of diphenylhexatriene in dimyristoyllecithin vesicles and the determination of "microviscosity". J Biol Chem. 1977 Apr 10;252(7):2163–2169. [PubMed] [Google Scholar]
  7. Dale R. E., Chen L. A., Brand L. Rotational relaxation of the "microviscosity" probe diphenylhexatriene in paraffin oil and egg lecithin vesicles. J Biol Chem. 1977 Nov 10;252(21):7500–7510. [PubMed] [Google Scholar]
  8. Genest D., Wahl P. Fluorescence anisotropy decay due to rotational brownian motion of ethidium intercalated in double strand DNA. Biochim Biophys Acta. 1978 Dec 21;521(2):502–509. doi: 10.1016/0005-2787(78)90292-7. [DOI] [PubMed] [Google Scholar]
  9. Georghiou S., Thompson M., Mukhopadhyay A. K. Melittin-phospholipid interaction: evidence for melittin aggregation. Biochim Biophys Acta. 1981 Apr 6;642(2):429–432. doi: 10.1016/0005-2736(81)90458-2. [DOI] [PubMed] [Google Scholar]
  10. Grinvald A., Steinberg I. Z. On the analysis of fluorescence decay kinetics by the method of least-squares. Anal Biochem. 1974 Jun;59(2):583–598. doi: 10.1016/0003-2697(74)90312-1. [DOI] [PubMed] [Google Scholar]
  11. Hanson D. C., Yguerabide J., Schumaker V. N. Segmental flexibility of immunoglobulin G antibody molecules in solution: a new interpretation. Biochemistry. 1981 Nov 24;20(24):6842–6852. doi: 10.1021/bi00527a016. [DOI] [PubMed] [Google Scholar]
  12. Harvey S. C., Cheung H. C. Fluorescence depolarization studies on the flexibility of myosin rod. Biochemistry. 1977 Nov 29;16(24):5181–5187. doi: 10.1021/bi00643a004. [DOI] [PubMed] [Google Scholar]
  13. Ikkai T., Wahl P., Auchet J. C. Anisotropy decay of labelled actin. Evidence of the flexibility of the peptide chain in F-actin molecules. Eur J Biochem. 1979 Jan 15;93(2):397–408. doi: 10.1111/j.1432-1033.1979.tb12836.x. [DOI] [PubMed] [Google Scholar]
  14. Isenberg I., Dyson R. D., Hanson R. Studies on the analysis of fluorescence decay data by the method of moments. Biophys J. 1973 Oct;13(10):1090–1115. doi: 10.1016/S0006-3495(73)86047-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jonas A., Privat J. P., Wahl P. Time-dependent fluorescence intensity and depolarization of diphenylhexatriene in micellar complexes of apolipoprotein C-I and dimyristoylglycerophosphocholine. Eur J Biochem. 1983 Jun 1;133(1):173–177. doi: 10.1111/j.1432-1033.1983.tb07444.x. [DOI] [PubMed] [Google Scholar]
  16. Jähnig F. Structural order of lipids and proteins in membranes: evaluation of fluorescence anisotropy data. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6361–6365. doi: 10.1073/pnas.76.12.6361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kawato S., Kinosita K., Jr, Ikegami A. Dynamic structure of lipid bilayers studied by nanosecond fluorescence techniques. Biochemistry. 1977 May 31;16(11):2319–2324. doi: 10.1021/bi00630a002. [DOI] [PubMed] [Google Scholar]
  18. Kawato S., Kinosita K., Jr, Ikegami A. Effect of cholesterol on the molecular motion in the hydrocarbon region of lecithin bilayers studied by nanosecond fluorescence techniques. Biochemistry. 1978 Nov 14;17(23):5026–5031. doi: 10.1021/bi00616a026. [DOI] [PubMed] [Google Scholar]
  19. Kinosita K., Jr, Kataoka R., Kimura Y., Gotoh O., Ikegami A. Dynamic structure of biological membranes as probed by 1,6-diphenyl-1,3,5-hexatriene: a nanosecond fluorescence depolarization study. Biochemistry. 1981 Jul 21;20(15):4270–4277. doi: 10.1021/bi00518a006. [DOI] [PubMed] [Google Scholar]
  20. Kinosita K., Jr, Kawato S., Ikegami A. A theory of fluorescence polarization decay in membranes. Biophys J. 1977 Dec;20(3):289–305. doi: 10.1016/S0006-3495(77)85550-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lipari G., Szabo A. Effect of librational motion on fluorescence depolarization and nuclear magnetic resonance relaxation in macromolecules and membranes. Biophys J. 1980 Jun;30(3):489–506. doi: 10.1016/S0006-3495(80)85109-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lovejoy C., Holowka D. A., Cathou R. E. Nanosecond fluorescence spectroscopy of pyrenebutyrate anti-pyrene antibody complexes. Biochemistry. 1977 Aug 9;16(16):3668–3672. doi: 10.1021/bi00635a025. [DOI] [PubMed] [Google Scholar]
  23. Martin C. E., Foyt D. C. Rotational relaxation of 1,6-diphenylhexatriene in membrane lipids of cells acclimated to high and low growth temperatures. Biochemistry. 1978 Aug 22;17(17):3587–3591. doi: 10.1021/bi00610a026. [DOI] [PubMed] [Google Scholar]
  24. Mendelson R. A., Morales M. F., Botts J. Segmental flexibility of the S-1 moiety of myosin. Biochemistry. 1973 Jun 5;12(12):2250–2255. doi: 10.1021/bi00736a011. [DOI] [PubMed] [Google Scholar]
  25. Millar D. P., Robbins R. J., Zewail A. H. Direct observation of the torsional dynamics of DNA and RNA by picosecond spectroscopy. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5593–5597. doi: 10.1073/pnas.77.10.5593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Munro I., Pecht I., Stryer L. Subnanosecond motions of tryptophan residues in proteins. Proc Natl Acad Sci U S A. 1979 Jan;76(1):56–60. doi: 10.1073/pnas.76.1.56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Papenhuijzen J., Visser A. J. Simulation of convoluted and exact emission anisotropy decay profiles. Biophys Chem. 1983 Jan;17(1):57–65. doi: 10.1016/0301-4622(83)87014-8. [DOI] [PubMed] [Google Scholar]
  28. Rigler R., Ehrenberg M. Molecular interactions and structure as analysed by fluorescence relaxation spectroscopy. Q Rev Biophys. 1973 May;6(2):139–199. doi: 10.1017/s003358350000113x. [DOI] [PubMed] [Google Scholar]
  29. Ross J. B., Rousslang K. W., Brand L. Time-resolved fluorescence and anisotropy decay of the tryptophan in adrenocorticotropin-(1-24). Biochemistry. 1981 Jul 21;20(15):4361–4369. doi: 10.1021/bi00518a020. [DOI] [PubMed] [Google Scholar]
  30. Ross J. B., Schmidt C. J., Brand L. Time-resolved fluorescence of the two tryptophans in horse liver alcohol dehydrogenase. Biochemistry. 1981 Jul 21;20(15):4369–4377. doi: 10.1021/bi00518a021. [DOI] [PubMed] [Google Scholar]
  31. Tao T. Nanosecond fluorescence depolarization studies on actin labeled with 1,5-IAEDANS and dansyl chloride. Evidence for label flexibility. FEBS Lett. 1978 Sep 1;93(1):146–150. doi: 10.1016/0014-5793(78)80824-2. [DOI] [PubMed] [Google Scholar]
  32. Tawada K., Wahl P., Auchet J. C. Study of actin and its interactions with heavy meromyosin and the regulatory proteins by the pulse fluorimetry in polarized light of a fluorescent probe attached to an actin cysteine. Eur J Biochem. 1978 Aug 1;88(2):411–419. doi: 10.1111/j.1432-1033.1978.tb12463.x. [DOI] [PubMed] [Google Scholar]
  33. Thomas J. C., Allison S. A., Appellof C. J., Schurr J. M. Torison dynamics and depolarization of fluorescence of linear macromolecules. II. Fluorescence polarization anisotropy measurements on a clean viral phi 29 DNA. Biophys Chem. 1980 Oct;12(2):177–188. doi: 10.1016/0301-4622(80)80050-0. [DOI] [PubMed] [Google Scholar]
  34. Tran C. D., Beddard G. S., Osborne A. D. Secondary structure and dynamics of glucagon in solution. Biochim Biophys Acta. 1982 Dec 20;709(2):256–264. doi: 10.1016/0167-4838(82)90468-x. [DOI] [PubMed] [Google Scholar]
  35. Veatch W. R., Stryer L. Effect of cholesterol on the rotational mobility of diphenylhexatriene in liposomes: a nanosecond fluorescence anisotrophy study. J Mol Biol. 1977 Dec 25;117(4):1109–1113. doi: 10.1016/s0022-2836(77)80017-x. [DOI] [PubMed] [Google Scholar]
  36. Visser A. J. Limited rotational motion of amphiphilic flavins in dipalmitoylphosphatidylcholine vesicles. Biochim Biophys Acta. 1982 Nov 8;692(2):244–251. doi: 10.1016/0005-2736(82)90528-4. [DOI] [PubMed] [Google Scholar]
  37. Wahl P. Analysis of fluorescence anisotropy decays by a least square method. Biophys Chem. 1979 Jul;10(1):91–104. doi: 10.1016/0301-4622(79)80009-5. [DOI] [PubMed] [Google Scholar]
  38. Wahl P., Kasai M., Changeux P. A study on the motion of proteins in excitable membrane fragments by nanosecond fluorescence polarization spectroscopy. Eur J Biochem. 1971 Feb 1;18(3):332–341. doi: 10.1111/j.1432-1033.1971.tb01248.x. [DOI] [PubMed] [Google Scholar]
  39. Wahl P. Measure de la décroissange de la fluorescence polarisée de la gamma-globuline-1-sulfonyl-5-diméthylaminonaphthalène. Biochim Biophys Acta. 1969 Feb 4;175(1):55–64. [PubMed] [Google Scholar]
  40. Wolber P. K., Hudson B. S. Bilayer acyl chain dynamics and lipid-protein interaction: the effect of the M13 bacteriophage coat protein on the decay of the fluorescence anisotropy of parinaric acid. Biophys J. 1982 Jan;37(1):253–262. doi: 10.1016/S0006-3495(82)84674-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wolber P. K., Hudson B. S. Fluorescence lifetime and time-resolved polarization anisotropy studies of acyl chain order and dynamics in lipid bilayers. Biochemistry. 1981 May 12;20(10):2800–2810. doi: 10.1021/bi00513a015. [DOI] [PubMed] [Google Scholar]
  42. Yguerabide J. Nanosecond fluorescence spectroscopy of macromolecules. Methods Enzymol. 1972;26:498–578. doi: 10.1016/s0076-6879(72)26026-8. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES