Abstract
Action potential propagation through cardiac tissue occurs in a spatially inhomogeneous three-dimensional electrical syncytium composed of discrete cells with regional variations in membrane properties and intercellular resistance. In comparison with axons, cardiac tissue presents some differences in the application of core conductor cable theory. We have used analytical and numerical techniques to contrast the propagation of action potentials along nerve axons and along cardiac strands, including an explicit inclusion of cellular anatomical factors (the surface-to-volume ratio), the strand radius, and the regional distribution of longitudinal resistance. A localized decrease in the number of gap junctions will produce a functional resistive barrier, which can lead to unidirectional block of propagation if the tissue on two sides of the barrier in either excitability or passive electrical load. However, in some circumstances, a resistive barrier separating regions of different electrical load can actually facilitate propagation into the region of larger electrical load.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beeler G. W., Reuter H. Reconstruction of the action potential of ventricular myocardial fibres. J Physiol. 1977 Jun;268(1):177–210. doi: 10.1113/jphysiol.1977.sp011853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clerc L. Directional differences of impulse spread in trabecular muscle from mammalian heart. J Physiol. 1976 Feb;255(2):335–346. doi: 10.1113/jphysiol.1976.sp011283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cranefield P. F., Hoffman B. F. Conduction of the cardiac impulse. II. Summation and inhibition. Circ Res. 1971 Feb;28(2):220–233. doi: 10.1161/01.res.28.2.220. [DOI] [PubMed] [Google Scholar]
- Goldstein S. S., Rall W. Changes of action potential shape and velocity for changing core conductor geometry. Biophys J. 1974 Oct;14(10):731–757. doi: 10.1016/S0006-3495(74)85947-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L. A note on conduction velocity. J Physiol. 1954 Jul 28;125(1):221–224. doi: 10.1113/jphysiol.1954.sp005152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Joyner R. W. Effects of the discrete pattern of electrical coupling on propagation through an electrical syncytium. Circ Res. 1982 Feb;50(2):192–200. doi: 10.1161/01.res.50.2.192. [DOI] [PubMed] [Google Scholar]
- Joyner R. W. Mechanisms of unidirectional block in cardiac tissues. Biophys J. 1981 Jul;35(1):113–125. doi: 10.1016/S0006-3495(81)84778-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Joyner R. W., Westerfield M., Moore J. W. Effects of cellular geometry on current flow during a propagated action potential. Biophys J. 1980 Aug;31(2):183–194. doi: 10.1016/S0006-3495(80)85049-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lieberman M., Kootsey J. M., Johnson E. A., Sawanobori T. Low conduction in cardiac muscle. Biophysical model. Biophys J. 1973 Jan;13(1):37–55. doi: 10.1016/s0006-3495(73)85968-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martinez-Palomo A., Alanis J., Benitez D. Transitional cardiac cells of the conductive system of the dog heart. Distinguishing morphological and electrophysiological features. J Cell Biol. 1970 Oct;47(1):1–17. doi: 10.1083/jcb.47.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McAllister R. E., Noble D., Tsien R. W. Reconstruction of the electrical activity of cardiac Purkinje fibres. J Physiol. 1975 Sep;251(1):1–59. doi: 10.1113/jphysiol.1975.sp011080. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mendez C., Mueller W. J., Merideth J., Moe G. K. Interaction of transmembrane potentials in canine Purkinje fibers and at Purkinje fiber-muscle junctions. Circ Res. 1969 Mar;24(3):361–372. doi: 10.1161/01.res.24.3.361. [DOI] [PubMed] [Google Scholar]
- Myerburg R. J., Gelband H., Hoffman B. F. Functional characteristics of the gating mechanism in the canine A-V conducting system. Circ Res. 1971 Feb;28(2):136–147. doi: 10.1161/01.res.28.2.136. [DOI] [PubMed] [Google Scholar]
- Sharp G. H., Joyner R. W. Simulated propagation of cardiac action potentials. Biophys J. 1980 Sep;31(3):403–423. doi: 10.1016/S0006-3495(80)85068-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spach M. S., Miller W. T., 3rd, Dolber P. C., Kootsey J. M., Sommer J. R., Mosher C. E., Jr The functional role of structural complexities in the propagation of depolarization in the atrium of the dog. Cardiac conduction disturbances due to discontinuities of effective axial resistivity. Circ Res. 1982 Feb;50(2):175–191. doi: 10.1161/01.res.50.2.175. [DOI] [PubMed] [Google Scholar]
- Spach M. S., Miller W. T., 3rd, Geselowitz D. B., Barr R. C., Kootsey J. M., Johnson E. A. The discontinuous nature of propagation in normal canine cardiac muscle. Evidence for recurrent discontinuities of intracellular resistance that affect the membrane currents. Circ Res. 1981 Jan;48(1):39–54. doi: 10.1161/01.res.48.1.39. [DOI] [PubMed] [Google Scholar]
- Westerfield M., Joyner R. W., Moore J. W. Temperature-sensitive conduction failure at axon branch points. J Neurophysiol. 1978 Jan;41(1):1–8. doi: 10.1152/jn.1978.41.1.1. [DOI] [PubMed] [Google Scholar]
