Abstract
A variety of transport properties have been measured for solutions of the water soluble polymer poly(ethylene oxide)(PEO) with molecular weights ranging from 200 to 14,000, and volume fractions ranging from 0-80%. The transport properties are thermal conductivity, electrical conductivity at audio frequencies (in solutions containing dilute electrolyte), and water self-diffusion. These data, together with dielectric relaxation data previously reported, are amenable to analysis by the same mixture theory. The ionic conductivity and water self-diffusion coefficient, but not the thermal conductivity, are substantially smaller than predicted by the Maxwell and Hanai mixture relations, calculated using the known transport properties of pure liquid water. A 25% (by volume) solution of PEO exhibits an average dielectric relaxation frequency of the suspending water of one half that of pure water, with clear evidence of a distribution of relaxation times present. The limits of the cumulative distribution of dielectric relaxation times that are consistent with the data are obtained using a linear programming technique. The application of simple mixture theory, under appropriate limiting conditions, yields hydration values for the more dilute polymer solutions that are somewhat larger than values obtained from thermodynamic measurements.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bull H. B., Breese K. Electrical conductance of protein solutions. J Colloid Interface Sci. 1969 Mar;29(3):492–495. doi: 10.1016/0021-9797(69)90133-7. [DOI] [PubMed] [Google Scholar]
- Clark M. E., Burnell E. E., Chapman N. R., Hinke J. A. Water in barnacle muscle. IV. Factors contributing to reduced self-diffusion. Biophys J. 1982 Sep;39(3):289–299. doi: 10.1016/S0006-3495(82)84519-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Foster K. R., Schepps J. L., Epstein B. R. Microwave dielectric studies on proteins, tissues, and heterogeneous suspensions. Bioelectromagnetics. 1982;3(1):29–43. doi: 10.1002/bem.2250030108. [DOI] [PubMed] [Google Scholar]
- Foster K. R., Schepps J. L., Schwan H. P. Microwave dielectric relaxation in muscle. A second look. Biophys J. 1980 Feb;29(2):271–281. doi: 10.1016/S0006-3495(80)85131-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Foster K. R., Stuchly M. A., Kraszewski A., Stuchly S. S. Microwave dielectric absorption of DNA in aqueous solution. Biopolymers. 1984 Mar;23(3):593–599. doi: 10.1002/bip.360230312. [DOI] [PubMed] [Google Scholar]
- Grant E. H., Keefe S. E., Takashima S. The dielectric behavior of aqueous solutions of bovine serum albumin from radiowave to microwave frequencies. J Phys Chem. 1968 Dec;72(13):4373–4380. doi: 10.1021/j100859a004. [DOI] [PubMed] [Google Scholar]
- LAUFFER M. A. Theory of diffusion in gels. Biophys J. 1961 Jan;1:205–213. doi: 10.1016/s0006-3495(61)86884-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Masszi G., Szijártó Z., Gróf P. Investigations on the ion- and water-binding of muscle by microwave measurements. Acta Biochim Biophys Acad Sci Hung. 1976;11(2-3):129–131. [PubMed] [Google Scholar]
- Nightingale N. R., Goodridge V. D., Sheppard R. J., Christie J. L. The dielectric properties of the cerebellum, cerebrum and brain stem of mouse brain at radiowave and microwave frequencies. Phys Med Biol. 1983 Aug;28(8):897–903. doi: 10.1088/0031-9155/28/8/002. [DOI] [PubMed] [Google Scholar]
- Pauly H., Schwan H. P. Dielectric properties and ion mobility in erythrocytes. Biophys J. 1966 Sep;6(5):621–639. doi: 10.1016/S0006-3495(66)86682-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pennock B. E., Schwan H. P. Further observations on the electrical properties of hemoglobin-bound water. J Phys Chem. 1969 Aug;73(8):2600–2610. doi: 10.1021/j100842a024. [DOI] [PubMed] [Google Scholar]
- SCHWAN H. P. Electrical properties of tissue and cell suspensions. Adv Biol Med Phys. 1957;5:147–209. doi: 10.1016/b978-1-4832-3111-2.50008-0. [DOI] [PubMed] [Google Scholar]