Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1984 Jun;45(6):1167–1177. doi: 10.1016/S0006-3495(84)84265-4

Model for left ventricular contraction combining the force length velocity relationship with the time varying elastance theory.

R Beyar, S Sideman
PMCID: PMC1434992  PMID: 6743747

Abstract

A model for the contraction of the left ventricle (LV) is developed for a spheroidal geometry. The classical force-length-velocity relationship for a single muscle fiber is assumed. The linear maximum pressure volume relationship (maximum elastance), a measure of muscle contractility, is further extended into a time-varying function. This is achieved by utilizing a mechanical activation function, assumed as half a sinusoidal wave, to describe the time-dependent isometric stress for the activated cardiac muscle. This, in turn, results in the time-varying elastance function and represents the instantaneous activity of the muscle contractile proteins. The model is tested for a set of boundary conditions that determine preload, afterload, and the inherent properties of the muscle, i.e., the contractility. The computed results of the isovolumic contraction, auxotonic contraction, and isovolumic relaxation are in agreement with the expected behavior of the LV. The relations between the simulated variations on preload, afterload, and contractility, and the set of performance indexes of the LV, are presented and discussed.

Full text

PDF
1167

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dehmer G. J., Lewis S. E., Hillis L. D., Corbett J., Parkey R. W., Willerson J. T. Exercise-induced alterations in left ventricular volumes and the pressure-volume relationship: a sensitive indicator of left ventricular dysfunction in patients with coronary artery disease. Circulation. 1981 May;63(5):1008–1018. doi: 10.1161/01.cir.63.5.1008. [DOI] [PubMed] [Google Scholar]
  2. Diamond G., Forrester J. S., Hargis J., Parmley W. W., Danzig R., Swan H. J. Diastolic pressure-volume relationship in the canine left ventricle. Circ Res. 1971 Sep;29(3):267–275. doi: 10.1161/01.res.29.3.267. [DOI] [PubMed] [Google Scholar]
  3. Gaasch W. H., Battle W. E., Oboler A. A., Banas J. S., Jr, Levine H. J. Left ventricular stress and compliance in man. With special reference to normalized ventricular function curves. Circulation. 1972 Apr;45(4):746–762. doi: 10.1161/01.cir.45.4.746. [DOI] [PubMed] [Google Scholar]
  4. Gault J. H., Ross J., Jr, Braunwald E. Contractile state of the left ventricle in man: instantaneous tension-velocity-length relations in patients with and without disease of the left ventricular myocardium. Circ Res. 1968 Apr;22(4):451–463. doi: 10.1161/01.res.22.4.451. [DOI] [PubMed] [Google Scholar]
  5. Grossman W., Braunwald E., Mann T., McLaurin L. P., Green L. H. Contractile state of the left ventricle in man as evaluated from end-systolic pressure-volume relations. Circulation. 1977 Nov;56(5):845–852. doi: 10.1161/01.cir.56.5.845. [DOI] [PubMed] [Google Scholar]
  6. Nivatpumin T., Katz S., Scheuer J. Peak left ventricular systolic pressure/end-systolic volume ratio: a sensitive detector of left ventricular disease. Am J Cardiol. 1979 May;43(5):969–974. doi: 10.1016/0002-9149(79)90361-8. [DOI] [PubMed] [Google Scholar]
  7. Parmley W. W., Brutsaert D. L., Sonnenblick E. H. Effects of altered loading on contractile events in isolated cat papillary muscle. Circ Res. 1969 Apr;24(4):521–532. doi: 10.1161/01.res.24.4.521. [DOI] [PubMed] [Google Scholar]
  8. Parmley W. W., Chuck L., Sonnenblick E. H. Relation of V max to different models of cardiac muscle. Circ Res. 1972 Jan;30(1):34–43. doi: 10.1161/01.res.30.1.34. [DOI] [PubMed] [Google Scholar]
  9. Parmley W. W., Yeatman L. A., Sonnenblick E. H. Differences between isotonic and isometric force-velocity relations in cardiac and skeletal muscle. Am J Physiol. 1970 Aug;219(2):546–550. doi: 10.1152/ajplegacy.1970.219.2.546. [DOI] [PubMed] [Google Scholar]
  10. Peterson K. L., Uther J. B., Shabeetai R., Braunwald E. Assessment of left ventricular performance in man. Instantaneous tension-velocity-length relations obtained with the aid of an electromagnetic velocity catheter in the ascending aorta. Circulation. 1973 May;47(5):924–935. doi: 10.1161/01.cir.47.5.924. [DOI] [PubMed] [Google Scholar]
  11. Piene H., Covell J. W. A force-length-time relationship describes the mechanics of canine left ventricular wall segments during auxotonic contractions. Circ Res. 1981 Jul;49(1):70–79. doi: 10.1161/01.res.49.1.70. [DOI] [PubMed] [Google Scholar]
  12. Pollack G. H. Maximum velocity as an index of contractility in cardiac muscle. A critical evaluation. Circ Res. 1970 Jan;26(1):111–127. doi: 10.1161/01.res.26.1.111. [DOI] [PubMed] [Google Scholar]
  13. Reichek N., Wilson J., St John Sutton M., Plappert T. A., Goldberg S., Hirshfeld J. W. Noninvasive determination of left ventricular end-systolic stress: validation of the method and initial application. Circulation. 1982 Jan;65(1):99–108. doi: 10.1161/01.cir.65.1.99. [DOI] [PubMed] [Google Scholar]
  14. SONNENBLICK E. H. Force-velocity relations in mammalian heart muscle. Am J Physiol. 1962 May;202:931–939. doi: 10.1152/ajplegacy.1962.202.5.931. [DOI] [PubMed] [Google Scholar]
  15. SONNENBLICK E. H. SERIES ELASTIC AND CONTRACTILE ELEMENTS IN HEART MUSCLE: CHANGES IN MUSCLE LENGTH. Am J Physiol. 1964 Dec;207:1330–1338. doi: 10.1152/ajplegacy.1964.207.6.1330. [DOI] [PubMed] [Google Scholar]
  16. Schuler G., von Olshausen K., Schwarz F., Mehmel H., Hofmann M., Hermann H. J., Lange D., Kübler W. Noninvasive assessment of myocardial contractility in asymptomatic patients with sever aortic regurgitation and normal left ventricular ejection fraction at rest. Am J Cardiol. 1982 Jul;50(1):45–52. doi: 10.1016/0002-9149(82)90007-8. [DOI] [PubMed] [Google Scholar]
  17. Slutsky R., Karliner J., Gerber K., Battler A., Froelicher V., Gregoratos G., Peterson K., Ashburn W. Peak systolic blood pressure/end-systolic volume ratio: assessment at rest and during exercise in normal subjects and patients with coronary heart disease. Am J Cardiol. 1980 Nov;46(5):813–820. doi: 10.1016/0002-9149(80)90433-6. [DOI] [PubMed] [Google Scholar]
  18. Suga H., Sagawa K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res. 1974 Jul;35(1):117–126. doi: 10.1161/01.res.35.1.117. [DOI] [PubMed] [Google Scholar]
  19. Suga H., Sagawa K., Kostiuk D. P. Controls of ventricular contractility assessed by pressure-volume ration, Emax. Cardiovasc Res. 1976 Sep;10(5):582–592. doi: 10.1093/cvr/10.5.582. [DOI] [PubMed] [Google Scholar]
  20. Suga H., Sagawa K., Shoukas A. A. Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res. 1973 Mar;32(3):314–322. doi: 10.1161/01.res.32.3.314. [DOI] [PubMed] [Google Scholar]
  21. Suga H., Yamakoshi K. Effects of stroke volume and velocity of ejection on end-systolic pressure of canine left ventricle. End-systolic volume clamping. Circ Res. 1977 May;40(5):445–450. doi: 10.1161/01.res.40.5.445. [DOI] [PubMed] [Google Scholar]
  22. Weber K. T., Janicki J. S., Hefner L. L. Left ventricular force-length relations of isovolumic and ejecting contractions. Am J Physiol. 1976 Aug;231(2):337–343. doi: 10.1152/ajplegacy.1976.231.2.337. [DOI] [PubMed] [Google Scholar]
  23. Weber K. T., Janicki J. S. Instantaneous force-velocity-length relations in isolated dog heart. Am J Physiol. 1977 Mar;232(3):H241–H249. doi: 10.1152/ajpheart.1977.232.3.H241. [DOI] [PubMed] [Google Scholar]
  24. Weber K. T., Janicki J. S. Interdependence of cardiac function, coronary flow, and oxygen extraction. Am J Physiol. 1978 Dec;235(6):H784–H793. doi: 10.1152/ajpheart.1978.235.6.H784. [DOI] [PubMed] [Google Scholar]
  25. Weber K. T., Janicki J. S., Reeves R. C., Hefner L. L. Factors influencing left ventricular shortening in isolated canine heart. Am J Physiol. 1976 Feb;230(2):419–426. doi: 10.1152/ajplegacy.1976.230.2.419. [DOI] [PubMed] [Google Scholar]
  26. Weber K. T., Janicki J. S. The dynamics of ventricular contraction: force, length, and shortening. Fed Proc. 1980 Feb;39(2):188–195. [PubMed] [Google Scholar]
  27. Weber K. T., Janicki J. S. The heart as a muscle--pump system and the concept of heart failure. Am Heart J. 1979 Sep;98(3):371–384. doi: 10.1016/0002-8703(79)90051-6. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES