Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1984 Oct;46(4):515–523. doi: 10.1016/S0006-3495(84)84049-7

Effect of orientational order on the decay of the fluorescence anisotropy in membrane suspensions. A new approximate solution of the rotational diffusion equation.

W van der Meer, H Pottel, W Herreman, M Ameloot, H Hendrickx, H Schröder
PMCID: PMC1435014  PMID: 6498269

Abstract

We discussed the time-dependence of fluorescent emission anisotropy of a cylindrical probe in membrane vesicles. We showed that, if the motion of the probe were described as diffusion in an anisotropic environment, it would be possible to determine not only the second-rank but also the fourth-rank orientational order parameter from the decay of the fluorescence anisotropy. The approximations involved were based on an interpolation of short-time and long-time behavior of the relevant correlation functions. A general expression was derived for the time dependence of the fluorescence anisotropy in closed form, which applies to any particular distribution model. It was shown to be in good agreement with previously reported results for the cone model and the Gaussian model. Finally, the applicability of the theory to time-resolved and differential phase fluorescence depolarization experiments was discussed.

Full text

PDF
515

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ameloot M., Hendrickx H., Herreman W., Pottel H., Van Cauwelaert F., van der Meer W. Effect of orientational order on the decay of the fluorescence anisotropy in membrane suspensions. Experimental verification on unilamellar vesicles and lipid/alpha-lactalbumin complexes. Biophys J. 1984 Oct;46(4):525–539. doi: 10.1016/S0006-3495(84)84050-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chen L. A., Dale R. E., Roth S., Brand L. Nanosecond time-dependent fluorescence depolarization of diphenylhexatriene in dimyristoyllecithin vesicles and the determination of "microviscosity". J Biol Chem. 1977 Apr 10;252(7):2163–2169. [PubMed] [Google Scholar]
  3. Dale R. E., Chen L. A., Brand L. Rotational relaxation of the "microviscosity" probe diphenylhexatriene in paraffin oil and egg lecithin vesicles. J Biol Chem. 1977 Nov 10;252(21):7500–7510. [PubMed] [Google Scholar]
  4. Engel L. W., Prendergast F. G. Values for and significance of order parameters and "cone angles" of fluorophore rotation in lipid bilayers. Biochemistry. 1981 Dec 22;20(26):7338–7345. doi: 10.1021/bi00529a003. [DOI] [PubMed] [Google Scholar]
  5. Heyn M. P. Determination of lipid order parameters and rotational correlation times from fluorescence depolarization experiments. FEBS Lett. 1979 Dec 15;108(2):359–364. doi: 10.1016/0014-5793(79)80564-5. [DOI] [PubMed] [Google Scholar]
  6. Jähnig F. Structural order of lipids and proteins in membranes: evaluation of fluorescence anisotropy data. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6361–6365. doi: 10.1073/pnas.76.12.6361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kawato S., Kinosita K., Jr, Ikegami A. Dynamic structure of lipid bilayers studied by nanosecond fluorescence techniques. Biochemistry. 1977 May 31;16(11):2319–2324. doi: 10.1021/bi00630a002. [DOI] [PubMed] [Google Scholar]
  8. Kinosita K., Jr, Ikegami A., Kawato S. On the wobbling-in-cone analysis of fluorescence anisotropy decay. Biophys J. 1982 Feb;37(2):461–464. doi: 10.1016/S0006-3495(82)84692-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kinosita K., Jr, Kawato S., Ikegami A. A theory of fluorescence polarization decay in membranes. Biophys J. 1977 Dec;20(3):289–305. doi: 10.1016/S0006-3495(77)85550-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lakowicz J. R., Prendergast F. G., Hogen D. Differential polarized phase fluorometric investigations of diphenylhexatriene in lipid bilayers. Quantitation of hindered depolarizing rotations. Biochemistry. 1979 Feb 6;18(3):508–519. doi: 10.1021/bi00570a021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lipari G., Szabo A. Effect of librational motion on fluorescence depolarization and nuclear magnetic resonance relaxation in macromolecules and membranes. Biophys J. 1980 Jun;30(3):489–506. doi: 10.1016/S0006-3495(80)85109-5. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES