Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1985 Apr;47(4):567–571. doi: 10.1016/S0006-3495(85)83952-7

Voltage-dependent removal of sodium inactivation by N-bromoacetamide and pronase.

V L Salgado, J Z Yeh, T Narahashi
PMCID: PMC1435119  PMID: 2580570

Abstract

When perfused internally through crayfish giant axons, pronase removed sodium inactivation more than three times as fast at -100 mV as compared with -30 mV. N-bromoacetamide, applied internally, removed sodium inactivation twice as fast at -100 mV as at -30 mV, and the relative rate of removal declined with membrane depolarization in proportion to steady-state sodium inactivation. We conclude that in the closed conformation the sodium inactivation gate is partially protected from destruction by N-bromoacetamide and pronase.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong C. M., Bezanilla F., Rojas E. Destruction of sodium conductance inactivation in squid axons perfused with pronase. J Gen Physiol. 1973 Oct;62(4):375–391. doi: 10.1085/jgp.62.4.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. HODGKIN A. L., HUXLEY A. F. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol. 1952 Apr;116(4):497–506. doi: 10.1113/jphysiol.1952.sp004719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. JULIAN F. J., MOORE J. W., GOLDMAN D. E. Current-voltage relations in the lobster giant axon membrane under voltage clamp conditions. J Gen Physiol. 1962 Jul;45:1217–1238. doi: 10.1085/jgp.45.6.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. JULIAN F. J., MOORE J. W., GOLDMAN D. E. Membrane potentials of the lobster giant axon obtained by use of the sucrose-gap technique. J Gen Physiol. 1962 Jul;45:1195–1216. doi: 10.1085/jgp.45.6.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lund A. E., Narahashi T. Modification of sodium channel kinetics by the insecticide tetramethrin in crayfish giant axons. Neurotoxicology. 1981 Oct;2(2):213–229. [PubMed] [Google Scholar]
  6. Oxford G. S. Some kinetic and steady-state properties of sodium channels after removal of inactivation. J Gen Physiol. 1981 Jan;77(1):1–22. doi: 10.1085/jgp.77.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Oxford G. S., Wu C. H., Narahashi T. Removal of sodium channel inactivation in squid giant axons by n-bromoacetamide. J Gen Physiol. 1978 Mar;71(3):227–247. doi: 10.1085/jgp.71.3.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Pooler J. P., Valenzeno D. P. Reexamination of the double sucrose gap technique for the study of lobster giant axons. Theory and experiments. Biophys J. 1983 Nov;44(2):261–269. doi: 10.1016/S0006-3495(83)84298-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rojas E., Rudy B. Destruction of the sodium conductance inactivation by a specific protease in perfused nerve fibres from Loligo. J Physiol. 1976 Nov;262(2):501–531. doi: 10.1113/jphysiol.1976.sp011608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Starkus J. G., Shrager P. Modification of slow sodium inactivation in nerve after internal perfusion with trypsin. Am J Physiol. 1978 Nov;235(5):C238–C244. doi: 10.1152/ajpcell.1978.235.5.C238. [DOI] [PubMed] [Google Scholar]
  11. Swenson R. P., Jr Gating charge immobilization and sodium current inactivation in internally perfused crayfish axons. Nature. 1980 Oct 16;287(5783):644–645. doi: 10.1038/287644a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES