Abstract
We have developed a new methodology to examine effector-cell-mediated immune attack using liposomes as targets. Hydrogen peroxide-associated killing of liposomes was observed with fluorescence intensification microscopy. Liposomes were composed of 98-99 mol % egg phosphatidylcholine and 1-2 mol % dinitrophenyl lipid hapten. Anti-dinitrophenyl IgG antibody was used to opsonize liposomes. Liposomes were loaded with dihydroxymandelic acid (DHMA) and peroxidase. Macrophage- or neutrophil-mediated recognition of liposomes triggers the release of H2O2 and other oxidative products. Upon interaction of H2O2 or OH radical with liposome contents, DHMA dimerizes forming a fluorescent derivative. Our studies indicate that individual living neutrophils and macrophages deposit oxidative products in a heterogenous fashion among bound targets.
Full text
PDF



Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Badwey J. A., Karnovsky M. L. Active oxygen species and the functions of phagocytic leukocytes. Annu Rev Biochem. 1980;49:695–726. doi: 10.1146/annurev.bi.49.070180.003403. [DOI] [PubMed] [Google Scholar]
- Engelhard V. H., Strominger J. L., Mescher M., Burakoff S. Induction of secondary cytotoxic T lymphocytes by purified HLA-A and HLA-B antigens reconstituted into phospholipid vesicles. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5688–5691. doi: 10.1073/pnas.75.11.5688. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Esser A. F., Kolb W. P., Podack E. R., Müller-Eberhard H. J. Molecular reorganization of lipid bilayers by complement: a possible mechanism for membranolysis. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1410–1414. doi: 10.1073/pnas.76.3.1410. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geiger B., Gitler C., Calef E., Arnon R. Dynamics of antibody- and lectin-mediated endocytosis of hapten-containing liposomes by murine macrophages. Eur J Immunol. 1981 Sep;11(9):710–716. doi: 10.1002/eji.1830110908. [DOI] [PubMed] [Google Scholar]
- Goldstein I. M., Roos D., Kaplan H. B., Weissmann G. Complement and immunoglobulins stimulate superoxide production by human leukocytes independently of phagocytosis. J Clin Invest. 1975 Nov;56(5):1155–1163. doi: 10.1172/JCI108191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gregoriadis G., Meehan A. Interaction of antibody-bearing small unilamellar liposomes with antigen-coated cells. The effect of antibody and antigen concentration on the liposomal and cell surface respectively. Biochem J. 1981 Nov 15;200(2):211–216. doi: 10.1042/bj2000211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guilbault G. G., Brignac P. J., Jr, Juneau M. New substrates for the fluorometric determination of oxidative enzymes. Anal Chem. 1968 Jul;40(8):1256–1263. doi: 10.1021/ac60264a027. [DOI] [PubMed] [Google Scholar]
- Guilbault G. G., Brignac P., Jr, Zimmer M. Homovanillic acid as a fluorometric substrate for oxidative enzymes. Analytical applications of the peroxidase, glucose oxidase, and xanthine oxidase systems. Anal Chem. 1968 Jan;40(1):190–196. doi: 10.1021/ac60257a002. [DOI] [PubMed] [Google Scholar]
- Hafeman D. G., Lewis J. T., McConnell H. M. Triggering of the macrophage and neutrophil respiratory burst by antibody bound to a spin-label phospholipid hapten in model lipid bilayer membranes. Biochemistry. 1980 Nov 11;19(23):5387–5394. doi: 10.1021/bi00564a037. [DOI] [PubMed] [Google Scholar]
- Hafeman D. G., McConnell H. M., Gray J. W., Dean P. N. Neutrophil activation monitored by flow cytometry: stimulation by phorbol diester is an all-or-none event. Science. 1982 Feb 5;215(4533):673–675. doi: 10.1126/science.6800035. [DOI] [PubMed] [Google Scholar]
- Hafeman D. G., Parce J. W., McConnell H. M. Specific antibody-dependent activation of neutrophils by liposomes containing spin-label lipid haptens. Biochem Biophys Res Commun. 1979 Feb 14;86(3):522–528. doi: 10.1016/0006-291x(79)91745-5. [DOI] [PubMed] [Google Scholar]
- Henry N., Parce J. W., McConnell H. M. Visualization of specific antibody and C1q binding to hapten-sensitized lipid vesicles. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3933–3937. doi: 10.1073/pnas.75.8.3933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hollander N., Mehdi S. Q., Weissman I. L., McConnell H. M., Kriss J. P. Allogeneic cytolysis of reconstituted membrane vesicles. Proc Natl Acad Sci U S A. 1979 Aug;76(8):4042–4045. doi: 10.1073/pnas.76.8.4042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howard F. D., Petty H. R., McConnell H. M. Identification of phagocytosis-associated surface proteins of macrophages by two-dimensional gel electrophoresis. J Cell Biol. 1982 Feb;92(2):283–288. doi: 10.1083/jcb.92.2.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Humphries G. K., McConnell H. M. Immune lysis of liposomes and erythrocyte ghosts loaded with spin label. Proc Natl Acad Sci U S A. 1974 May;71(5):1691–1694. doi: 10.1073/pnas.71.5.1691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kinsky S. C., Nicolotti R. A. Immunological properties of model membranes. Annu Rev Biochem. 1977;46:49–67. doi: 10.1146/annurev.bi.46.070177.000405. [DOI] [PubMed] [Google Scholar]
- Lewis J. T., Hafeman D. G., McConnell H. M. Kinetics of antibody-dependent binding of haptenated phospholipid vesicles to a macrophage-related cell line. Biochemistry. 1980 Nov 11;19(23):5376–5386. doi: 10.1021/bi00564a036. [DOI] [PubMed] [Google Scholar]
- Lewis J. T., McConnell H. M. Model lipid bilayer membranes as tragets for antibody-dependent, cellular- and complement-mediated immune attack. Ann N Y Acad Sci. 1978;308:124–138. doi: 10.1111/j.1749-6632.1978.tb22018.x. [DOI] [PubMed] [Google Scholar]
- Mayer M. M., Hammer C. H., Michaels D. W., Shin M. L. Immunologically mediated membrane damage: the mechanism of complement action and the similarity of lymphocyte-mediated cytoxicity. Immunochemistry. 1978 Nov;15(10-11):813–831. doi: 10.1016/0161-5890(78)90115-3. [DOI] [PubMed] [Google Scholar]
- Mehdi S. Q., Lewis J. T., Copeland B. R., McConnell H. M. Freeze-fracture of reconstituted model membranes used as targets for cell-mediated cytotoxicity. Biochim Biophys Acta. 1980 Aug 4;600(2):590–594. doi: 10.1016/0005-2736(80)90461-7. [DOI] [PubMed] [Google Scholar]
- Petty H. R., Hafeman D. G., McConnell H. M. Disappearance of macrophage surface folds after antibody-dependent phagocytosis. J Cell Biol. 1981 May;89(2):223–229. doi: 10.1083/jcb.89.2.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petty H. R., Hafeman D. G., McConnell H. M. Specific antibody-dependent phagocytosis of lipid vesicles by RAW264 macrophages results in the loss of cell surface Fc but not C3b receptor activity. J Immunol. 1980 Dec;125(6):2391–2396. [PubMed] [Google Scholar]
- Petty H. R., McConnell H. M. Cytochemical study of liposome and lipid vesicle phagocytosis. Biochim Biophys Acta. 1983 Oct 26;735(1):77–85. doi: 10.1016/0005-2736(83)90262-6. [DOI] [PubMed] [Google Scholar]
- Petty H. R., Smith L. M., Fearon D. T., McConnell H. M. Lateral distribution and diffusion of the C3b receptor of complement, HLA antigens, and lipid probes in peripheral blood leukocytes. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6587–6591. doi: 10.1073/pnas.77.11.6587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rimle D., Dereski W., Petty H. R. Enhanced binding of phosphatidylserine-containing lipid vesicle targets to RAW264 macrophages. Mol Cell Biochem. 1984 Sep;64(1):81–87. doi: 10.1007/BF00420931. [DOI] [PubMed] [Google Scholar]
- Willingham M. C., Pastan I. The visualization of fluorescent proteins in living cells by video intensification microscopy (VIM). Cell. 1978 Mar;13(3):501–507. doi: 10.1016/0092-8674(78)90323-9. [DOI] [PubMed] [Google Scholar]
- Wu P. S., Tin G. W., Baldeschwieler J. D. Phagocytosis of carbohydrate-modified phospholipid vesicles by macrophage. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2033–2037. doi: 10.1073/pnas.78.4.2033. [DOI] [PMC free article] [PubMed] [Google Scholar]