Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1985 Jun;47(6):773–780. doi: 10.1016/S0006-3495(85)83980-1

The inhibition of muscle contraction by adenosine 5' (beta, gamma-imido) triphosphate and by pyrophosphate.

E Pate, R Cooke
PMCID: PMC1435171  PMID: 2990586

Abstract

We have studied the inhibition of the contraction of glycerinated rabbit psoas muscle caused by ligands that bind to the ATPase site of myosin. Two ligands, adenosine 5' (beta, gamma-imido) triphosphate (AMPPNP) and pyrophosphate (PPi), decreased the force and stiffness developed in isometric contractions and the velocity of shortening of isotonic contractions. The force exerted by isometric fibers was measured as a function of MgATP in the presence and absence of a constant concentration of the ligands. As the MgATP concentration decreased, the inhibition of tension caused by the ligand increased, reaching approximately 50% at 25 microM MgATP and either 2 mM MgPPi or 2 mM MgAMPPNP. The maximum velocity of shortening was also measured as a function of MgATP concentration in the presence of 1 and 2 mM MgPPi and 2.5 and 5 mM MgAMPPNP. Both ligands acted as pure competitive inhibitors with Ki = 3.0 mM for PPi and 5.1 mM for MgAMPPNP. These data show that both ligands are weak inhibitors of the contraction of fibers. The results provided information on the energetics of actin-myosin-ligand states that occur in the portion of the cross-bridge cycle where MgATP binds to myosin. A simple analysis of the inhibition of velocity suggests that MgAMPPNP binds to the actomyosin complex at this step of the cycle with an effective affinity constant of approximately 2 X 10(2) M-1.

Full text

PDF
773

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brokaw C. J. Effects of viscosity and ATP concentration on the movement of reactivated sea-urchin sperm flagella. J Exp Biol. 1975 Jun;62(3):701–719. doi: 10.1242/jeb.62.3.701. [DOI] [PubMed] [Google Scholar]
  2. Chaen S., Kometani K., Yamada T., Shimizu H. Substrate-concentration of dependences of tension, shortening velocity and ATPase activity of glycerinated single muscle fibers. J Biochem. 1981 Dec;90(6):1611–1621. doi: 10.1093/oxfordjournals.jbchem.a133636. [DOI] [PubMed] [Google Scholar]
  3. Cooke R., Bialek W. Contraction of glycerinated muscle fibers as a function of the ATP concentration. Biophys J. 1979 Nov;28(2):241–258. doi: 10.1016/S0006-3495(79)85174-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cox R. N., Kawai M. Alternate energy transduction routes in chemically skinned rabbit psoas muscle fibres: a further study of the effect of MgATP over a wide concentration range. J Muscle Res Cell Motil. 1981 Jun;2(2):203–214. doi: 10.1007/BF00711870. [DOI] [PubMed] [Google Scholar]
  5. Crowder M. S., Cooke R. The effect of myosin sulphydryl modification on the mechanics of fibre contraction. J Muscle Res Cell Motil. 1984 Apr;5(2):131–146. doi: 10.1007/BF00712152. [DOI] [PubMed] [Google Scholar]
  6. Dancker P. The competition between adenosine triphosphate and inorganic pyrophosphate for myosin and its suppression by substoichiometric actin concentrations. Biochim Biophys Acta. 1983 Dec 28;749(3):296–301. doi: 10.1016/0167-4838(83)90239-x. [DOI] [PubMed] [Google Scholar]
  7. Eisenberg E., Greene L. E. The relation of muscle biochemistry to muscle physiology. Annu Rev Physiol. 1980;42:293–309. doi: 10.1146/annurev.ph.42.030180.001453. [DOI] [PubMed] [Google Scholar]
  8. Ferenczi M. A., Goldman Y. E., Simmons R. M. The dependence of force and shortening velocity on substrate concentration in skinned muscle fibres from Rana temporaria. J Physiol. 1984 May;350:519–543. doi: 10.1113/jphysiol.1984.sp015216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goldman Y. E., Hibberd M. G., Trentham D. R. Initiation of active contraction by photogeneration of adenosine-5'-triphosphate in rabbit psoas muscle fibres. J Physiol. 1984 Sep;354:605–624. doi: 10.1113/jphysiol.1984.sp015395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Greene L. E., Eisenberg E. Dissociation of the actin.subfragment 1 complex by adenyl-5'-yl imidodiphosphate, ADP, and PPi. J Biol Chem. 1980 Jan 25;255(2):543–548. [PubMed] [Google Scholar]
  11. KUBY S. A., NODA L., LARDY H. A. Adenosinetriphosphate-creatine transphosphorylase. I. Isolation of the crystalline enzyme from rabbit muscle. J Biol Chem. 1954 Jul;209(1):191–201. [PubMed] [Google Scholar]
  12. Kawai M. Head rotation or dissociation? A study of exponential rate processes in chemically skinned rabbit muscle fibers when MgATP concentration is changed. Biophys J. 1978 Apr;22(1):97–103. doi: 10.1016/S0006-3495(78)85473-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Konrad M., Goody R. S. Kinetic and thermodynamic properties of the ternary complex between F-actin, myosin subfragment 1 and adenosine 5'-[beta, gamma-imido]triphosphate. Eur J Biochem. 1982 Nov 15;128(2-3):547–555. doi: 10.1111/j.1432-1033.1982.tb07000.x. [DOI] [PubMed] [Google Scholar]
  14. Kuhn H. J. Cross bridge slippage induced by the ATP analogue AMP-PNP and stretch in glycerol-extracted fibrillar muscle fibres. Biophys Struct Mech. 1978 Apr 13;4(2):159–168. doi: 10.1007/BF00539229. [DOI] [PubMed] [Google Scholar]
  15. Kuhn H. J. Tension transients in fibrillar muscle fibres as affected by stretch-dependent binding of AMP-PNP: a teinochemical effect? Biophys Struct Mech. 1978 Jul 12;4(3):209–222. doi: 10.1007/BF02426086. [DOI] [PubMed] [Google Scholar]
  16. Kuhn H. J. The mechanochemistry of force production in muscle. J Muscle Res Cell Motil. 1981 Mar;2(1):7–44. doi: 10.1007/BF00712060. [DOI] [PubMed] [Google Scholar]
  17. Marston S. B. Evidence for an altered structure of actin-S1 complexes when Mg-adenylylimidodiphosphate binds. J Muscle Res Cell Motil. 1980 Sep;1(3):305–320. doi: 10.1007/BF00711933. [DOI] [PubMed] [Google Scholar]
  18. Marston S. B., Rodger C. D., Tregear R. T. Changes in muscle crossbridges when beta, gamma-imido-ATP binds to myosin. J Mol Biol. 1976 Jun 14;104(1):263–276. doi: 10.1016/0022-2836(76)90012-7. [DOI] [PubMed] [Google Scholar]
  19. Marston S. B., Tregear R. T., Rodger C. D., Clarke M. L. Coupling between the enzymatic site of myosin and the mechanical output of muscle. J Mol Biol. 1979 Feb 25;128(2):111–126. doi: 10.1016/0022-2836(79)90121-9. [DOI] [PubMed] [Google Scholar]
  20. Moss R. L., Haworth R. A. Contraction of rabbit skinned skeletal muscle fibers at low levels of magnesium adenosine triphosphate. Biophys J. 1984 Apr;45(4):733–742. doi: 10.1016/S0006-3495(84)84216-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. NIHEI T., NODA L., MORALES M. F. Kinetic properties and equilibrium constant of the adenosine triphosphate-creatine transphosphorylase-catalyzed reaction. J Biol Chem. 1961 Dec;236:3203–3209. [PubMed] [Google Scholar]
  22. Okuno M., Brokaw C. J. Effects of AMPPNP and vanadate on the mechanochemical crossbridge cycle in flagella. J Muscle Res Cell Motil. 1981 Mar;2(1):131–140. doi: 10.1007/BF00712064. [DOI] [PubMed] [Google Scholar]
  23. Penningroth S. M., Olehnik K., Cheung A. ATP formation from adenyl-5'-yl imidodiphosphate, a nonhydrolyzable ATP analog. J Biol Chem. 1980 Oct 25;255(20):9545–9548. [PubMed] [Google Scholar]
  24. Shimizu H., Tanaka H. Symmetric and asymmetric processes in the mechano-chemical conversion in the cross-bridge mechanism studied by isometric tension transients. Adv Exp Med Biol. 1984;170:585–599. doi: 10.1007/978-1-4684-4703-3_54. [DOI] [PubMed] [Google Scholar]
  25. Taylor E. W. Mechanism of actomyosin ATPase and the problem of muscle contraction. CRC Crit Rev Biochem. 1979;6(2):103–164. doi: 10.3109/10409237909102562. [DOI] [PubMed] [Google Scholar]
  26. Trybus K. M., Taylor E. W. Transient kinetics of adenosine 5'-diphosphate and adenosine 5'-(beta, gamma-imidotriphosphate) binding to subfragment 1 and actosubfragment 1. Biochemistry. 1982 Mar 16;21(6):1284–1294. doi: 10.1021/bi00535a028. [DOI] [PubMed] [Google Scholar]
  27. White D. C. Rigor contraction and the effect of various phosphate compounds on glycerinated insect flight and vertebrate muscle. J Physiol. 1970 Jul;208(3):583–605. doi: 10.1113/jphysiol.1970.sp009138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wilson M. G., White D. C. The role of magnesium adenosine triphosphate in the contractile kinetics of insect fibrillar flight muscle. J Muscle Res Cell Motil. 1983 Jun;4(3):283–306. doi: 10.1007/BF00711997. [DOI] [PubMed] [Google Scholar]
  29. Yount R. G., Babcock D., Ballantyne W., Ojala D. Adenylyl imidodiphosphate, an adenosine triphosphate analog containing a P--N--P linkage. Biochemistry. 1971 Jun 22;10(13):2484–2489. doi: 10.1021/bi00789a009. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES