Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1985 Mar;47(3):349–355. doi: 10.1016/s0006-3495(85)83925-4

Substituents at the C13 Position of Retinal and Their Influence on the Function of Bacteriorhodopsin

Paul Tavan, Klaus Schulten, Wolfgang Gärtner, Dieter Oesterhelt
PMCID: PMC1435211  PMID: 19431586

Abstract

Retinal analogues in which the 13-methyl group is replaced by H, C2H5, CF3, and OCH3 residues are studied by means of quantumchemical modified neglect of diatomic overlap-correlated version (MNDOC) calculations. The analogues are suitable to test the stereochemical mechanism of proton pumping in bacteriorhodopsin. The results explain the proton-pumping activities of bacterio-opsin reconstituted with these analogues and elucidate the decisive role of retinal's ground-state intramolecular properties in the pump cycle of bacteriorhodopsin.

Full text

PDF
349

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernard G. D. Red-absorbing visual pigment of butterflies. Science. 1979 Mar 16;203(4385):1125–1127. doi: 10.1126/science.203.4385.1125. [DOI] [PubMed] [Google Scholar]
  2. Erickson J. O., Blatz P. E. N-retinylidene-1-amino-2-propanol: a Schiff base analog for rhodopsin. Vision Res. 1968 Oct;8(10):1367–1375. doi: 10.1016/0042-6989(68)90056-4. [DOI] [PubMed] [Google Scholar]
  3. Harbison G. S., Smith S. O., Pardoen J. A., Winkel C., Lugtenburg J., Herzfeld J., Mathies R., Griffin R. G. Dark-adapted bacteriorhodopsin contains 13-cis, 15-syn and all-trans, 15-anti retinal Schiff bases. Proc Natl Acad Sci U S A. 1984 Mar;81(6):1706–1709. doi: 10.1073/pnas.81.6.1706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Honig B., Greenberg A. D., Dinur U., Ebrey T. G. Visual-pigment spectra: implications of the protonation of the retinal Schiff base. Biochemistry. 1976 Oct 19;15(21):4593–4599. doi: 10.1021/bi00666a008. [DOI] [PubMed] [Google Scholar]
  5. Maeda A., Iwasa T., Yoshizawa T. Isomeric composition of retinal chromophore in dark-adapted bacteriorhodopsin. J Biochem. 1977 Dec;82(6):1599–1604. doi: 10.1093/oxfordjournals.jbchem.a131855. [DOI] [PubMed] [Google Scholar]
  6. Oesterhelt D., Meentzen M., Schuhmann L. Reversible dissociation of the purple complex in bacteriorhodopsin and identification of 13-cis and all-trans-retinal as its chromophores. Eur J Biochem. 1973 Dec 17;40(2):453–463. doi: 10.1111/j.1432-1033.1973.tb03214.x. [DOI] [PubMed] [Google Scholar]
  7. Schreckenbach T., Walckhoff B., Oesterhelt D. Specificity of the retinal binding site of bacteriorhodopsin: chemical and stereochemical requirements for the binding of retinol and retinal. Biochemistry. 1978 Dec 12;17(25):5353–5359. doi: 10.1021/bi00618a005. [DOI] [PubMed] [Google Scholar]
  8. Smith S. O., Myers A. B., Pardoen J. A., Winkel C., Mulder P. P., Lugtenburg J., Mathies R. Determination of retinal Schiff base configuration in bacteriorhodopsin. Proc Natl Acad Sci U S A. 1984 Apr;81(7):2055–2059. doi: 10.1073/pnas.81.7.2055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Stoeckenius W., Bogomolni R. A. Bacteriorhodopsin and related pigments of halobacteria. Annu Rev Biochem. 1982;51:587–616. doi: 10.1146/annurev.bi.51.070182.003103. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES