Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1998 Jan;10(1):5–17. doi: 10.1105/tpc.10.1.5

Genetic analysis of female gametophyte development and function.

G N Drews 1, D Lee 1, C A Christensen 1
PMCID: PMC143932  PMID: 9477569

Abstract

The female gametophyte is an absolutely essential structure for angiosperm reproduction. It produces the egg cell and central cell (which give rise to the embryo and endosperm, respectively) and mediates several reproductive processes including pollen tube guidance, fertilization, the induction of seed development, and perhaps also maternal control of embryo development. Although much has been learned about these processes at the cytological level, specific molecules mediating and controlling megagametogenesis and female gametophyte function have not been identified. A genetic approach to the identification of such molecules has been initiated in Arabidopsis and maize. Although genetic analyses are still in their infancy, mutations affecting female gametophyte function and specific steps of megagametogenesis have already been identified. Large-scale genetic screens aimed at identifying mutants affecting every step of megagametogenesis and female gametophyte function are in progress; the characterization of genes identified in these screens should go a long way toward defining the molecules that are required for female gametophyte development and function.

Full Text

The Full Text of this article is available as a PDF (295.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker S. C., Robinson-Beers K., Villanueva J. M., Gaiser J. C., Gasser C. S. Interactions among genes regulating ovule development in Arabidopsis thaliana. Genetics. 1997 Apr;145(4):1109–1124. doi: 10.1093/genetics/145.4.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bedinger P. A., Hardeman K. J., Loukides C. A. Travelling in style: the cell biology of pollen. Trends Cell Biol. 1994 Apr;4(4):132–138. doi: 10.1016/0962-8924(94)90068-x. [DOI] [PubMed] [Google Scholar]
  3. Castle L. A., Errampalli D., Atherton T. L., Franzmann L. H., Yoon E. S., Meinke D. W. Genetic and molecular characterization of embryonic mutants identified following seed transformation in Arabidopsis. Mol Gen Genet. 1993 Dec;241(5-6):504–514. doi: 10.1007/BF00279892. [DOI] [PubMed] [Google Scholar]
  4. Chaudhury A. M., Ming L., Miller C., Craig S., Dennis E. S., Peacock W. J. Fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):4223–4228. doi: 10.1073/pnas.94.8.4223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clark J. K., Sheridan W. F. Isolation and Characterization of 51 embryo-specific Mutations of Maize. Plant Cell. 1991 Sep;3(9):935–951. doi: 10.1105/tpc.3.9.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Colombo L., Franken J., Van der Krol A. R., Wittich P. E., Dons H. J., Angenent G. C. Downregulation of ovule-specific MADS box genes from petunia results in maternally controlled defects in seed development. Plant Cell. 1997 May;9(5):703–715. doi: 10.1105/tpc.9.5.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Diboll A. G., Larson D. A. An electron microscopic study of the mature megagametophyte in Zea mays. Am J Bot. 1966 Apr;53(4):391–402. [PubMed] [Google Scholar]
  8. Dresselhaus T., Lörz H., Kranz E. Representative cDNA libraries from few plant cells. Plant J. 1994 Apr;5(4):605–610. doi: 10.1046/j.1365-313x.1994.5040605.x. [DOI] [PubMed] [Google Scholar]
  9. Dumas C., Mogensen H. L. Gametes and Fertilization: Maize as a Model System for Experimental Embryogenesis in Flowering Plants. Plant Cell. 1993 Oct;5(10):1337–1348. doi: 10.1105/tpc.5.10.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Elliott R. C., Betzner A. S., Huttner E., Oakes M. P., Tucker W. Q., Gerentes D., Perez P., Smyth D. R. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell. 1996 Feb;8(2):155–168. doi: 10.1105/tpc.8.2.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Feldmann K. A., Coury D. A., Christianson M. L. Exceptional segregation of a selectable marker (KanR) in Arabidopsis identifies genes important for gametophytic growth and development. Genetics. 1997 Nov;147(3):1411–1422. doi: 10.1093/genetics/147.3.1411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gaiser J. C., Robinson-Beers K., Gasser C. S. The Arabidopsis SUPERMAN Gene Mediates Asymmetric Growth of the Outer Integument of Ovules. Plant Cell. 1995 Mar;7(3):333–345. doi: 10.1105/tpc.7.3.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Huang B. Q., Pierson E. S., Russell S. D., Tiezzi A., Cresti M. Cytoskeletal organisation and modification during pollen tube arrival, gamete delivery and fertilisation in Plumbago zeylanica. Zygote. 1993 May;1(2):143–154. doi: 10.1017/s0967199400001404. [DOI] [PubMed] [Google Scholar]
  14. Huang B. Q., Sheridan W. F. Embryo Sac Development in the Maize indeterminate gametophyte1 Mutant: Abnormal Nuclear Behavior and Defective Microtubule Organization. Plant Cell. 1996 Aug;8(8):1391–1407. doi: 10.1105/tpc.8.8.1391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Huang B. Q., Sheridan W. F. Female Gametophyte Development in Maize: Microtubular Organization and Embryo Sac Polarity. Plant Cell. 1994 Jun;6(6):845–861. doi: 10.1105/tpc.6.6.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hulskamp M., Schneitz K., Pruitt R. E. Genetic Evidence for a Long-Range Activity That Directs Pollen Tube Guidance in Arabidopsis. Plant Cell. 1995 Jan;7(1):57–64. doi: 10.1105/tpc.7.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. JENSEN W. A. OBSERVATIONS ON THE FUSION OF NUCLEI IN PLANTS. J Cell Biol. 1964 Dec;23:669–672. doi: 10.1083/jcb.23.3.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jones D. F. Selective Fertilization among the Gametes from the Same Individuals. Proc Natl Acad Sci U S A. 1924 Jun;10(6):218–221. doi: 10.1073/pnas.10.6.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kieber J. J., Rothenberg M., Roman G., Feldmann K. A., Ecker J. R. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell. 1993 Feb 12;72(3):427–441. doi: 10.1016/0092-8674(93)90119-b. [DOI] [PubMed] [Google Scholar]
  20. Klucher K. M., Chow H., Reiser L., Fischer R. L. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell. 1996 Feb;8(2):137–153. doi: 10.1105/tpc.8.2.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Koltunow A. M. Apomixis: Embryo Sacs and Embryos Formed without Meiosis or Fertilization in Ovules. Plant Cell. 1993 Oct;5(10):1425–1437. doi: 10.1105/tpc.5.10.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Koltunow A. M., Bicknell R. A., Chaudhury A. M. Apomixis: Molecular Strategies for the Generation of Genetically Identical Seeds without Fertilization. Plant Physiol. 1995 Aug;108(4):1345–1352. doi: 10.1104/pp.108.4.1345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lang J. D., Ray S., Ray A. sin 1, a mutation affecting female fertility in Arabidopsis, interacts with mod 1, its recessive modifier. Genetics. 1994 Aug;137(4):1101–1110. doi: 10.1093/genetics/137.4.1101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Leon-Kloosterziel K. M., Keijzer C. J., Koornneef M. A Seed Shape Mutant of Arabidopsis That Is Affected in Integument Development. Plant Cell. 1994 Mar;6(3):385–392. doi: 10.1105/tpc.6.3.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McCormick S. Male Gametophyte Development. Plant Cell. 1993 Oct;5(10):1265–1275. doi: 10.1105/tpc.5.10.1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Meinke D. W., Sussex I. M. Embryo-lethal mutants of Arabidopsis thaliana. A model system for genetic analysis of plant embryo development. Dev Biol. 1979 Sep;72(1):50–61. doi: 10.1016/0012-1606(79)90097-6. [DOI] [PubMed] [Google Scholar]
  27. Miller M. E., Chourey P. S. The Maize Invertase-Deficient miniature-1 Seed Mutation Is Associated with Aberrant Pedicel and Endosperm Development. Plant Cell. 1992 Mar;4(3):297–305. doi: 10.1105/tpc.4.3.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Modrusan Z., Reiser L., Feldmann K. A., Fischer R. L., Haughn G. W. Homeotic Transformation of Ovules into Carpel-like Structures in Arabidopsis. Plant Cell. 1994 Mar;6(3):333–349. doi: 10.1105/tpc.6.3.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nadeau J. A., Zhang X. S., Li J., O'Neill S. D. Ovule development: identification of stage-specific and tissue-specific cDNAs. Plant Cell. 1996 Feb;8(2):213–239. doi: 10.1105/tpc.8.2.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Niyogi K. K., Last R. L., Fink G. R., Keith B. Suppressors of trp1 fluorescence identify a new arabidopsis gene, TRP4, encoding the anthranilate synthase beta subunit. Plant Cell. 1993 Sep;5(9):1011–1027. doi: 10.1105/tpc.5.9.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ohad N., Margossian L., Hsu Y. C., Williams C., Repetti P., Fischer R. L. A mutation that allows endosperm development without fertilization. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5319–5324. doi: 10.1073/pnas.93.11.5319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Perry S. E., Nichols K. W., Fernandez D. E. The MADS domain protein AGL15 localizes to the nucleus during early stages of seed development. Plant Cell. 1996 Nov;8(11):1977–1989. doi: 10.1105/tpc.8.11.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Preuss D. Being fruitful: genetics of reproduction in Arabidopsis. Trends Genet. 1995 Apr;11(4):147–153. doi: 10.1016/s0168-9525(00)89029-0. [DOI] [PubMed] [Google Scholar]
  34. Ray S. M., Park S. S., Ray A. Pollen tube guidance by the female gametophyte. Development. 1997 Jun;124(12):2489–2498. doi: 10.1242/dev.124.12.2489. [DOI] [PubMed] [Google Scholar]
  35. Ray S., Golden T., Ray A. Maternal effects of the short integument mutation on embryo development in Arabidopsis. Dev Biol. 1996 Nov 25;180(1):365–369. doi: 10.1006/dbio.1996.0309. [DOI] [PubMed] [Google Scholar]
  36. Reiser L., Fischer R. L. The Ovule and the Embryo Sac. Plant Cell. 1993 Oct;5(10):1291–1301. doi: 10.1105/tpc.5.10.1291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rhoades M M, Rhoades V H. Genetic Studies with Factors in the Tenth Chromosome in Maize. Genetics. 1939 Mar;24(2):302–314. doi: 10.1093/genetics/24.2.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Robinson-Beers K., Pruitt R. E., Gasser C. S. Ovule Development in Wild-Type Arabidopsis and Two Female-Sterile Mutants. Plant Cell. 1992 Oct;4(10):1237–1249. doi: 10.1105/tpc.4.10.1237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Russell S. D. The Egg Cell: Development and Role in Fertilization and Early Embryogenesis. Plant Cell. 1993 Oct;5(10):1349–1359. doi: 10.1105/tpc.5.10.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rédei G P. Non-Mendelian Megagametogenesis in Arabidopsis. Genetics. 1965 Jun;51(6):857–872. doi: 10.1093/genetics/51.6.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Schneitz K., Hülskamp M., Kopczak S. D., Pruitt R. E. Dissection of sexual organ ontogenesis: a genetic analysis of ovule development in Arabidopsis thaliana. Development. 1997 Apr;124(7):1367–1376. doi: 10.1242/dev.124.7.1367. [DOI] [PubMed] [Google Scholar]
  42. Schulz P., Jensen W. A. Capsella embryogenesis: the central cell. J Cell Sci. 1973 May;12(3):741–763. doi: 10.1242/jcs.12.3.741. [DOI] [PubMed] [Google Scholar]
  43. Singleton W R, Mangelsdorf P C. Gametic Lethals on the Fourth Chromosome of Maize. Genetics. 1940 Jul;25(4):366–390. doi: 10.1093/genetics/25.4.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Smyth D. R. Attractive ovules. Curr Biol. 1997 Feb 1;7(2):R64–R66. doi: 10.1016/s0960-9822(06)00037-6. [DOI] [PubMed] [Google Scholar]
  45. Springer P. S., McCombie W. R., Sundaresan V., Martienssen R. A. Gene trap tagging of PROLIFERA, an essential MCM2-3-5-like gene in Arabidopsis. Science. 1995 May 12;268(5212):877–880. doi: 10.1126/science.7754372. [DOI] [PubMed] [Google Scholar]
  46. Sundaresan V., Springer P., Volpe T., Haward S., Jones J. D., Dean C., Ma H., Martienssen R. Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev. 1995 Jul 15;9(14):1797–1810. doi: 10.1101/gad.9.14.1797. [DOI] [PubMed] [Google Scholar]
  47. Vizir I. Y., Anderson M. L., Wilson Z. A., Mulligan B. J. Isolation of deficiencies in the Arabidopsis genome by gamma-irradiation of pollen. Genetics. 1994 Aug;137(4):1111–1119. doi: 10.1093/genetics/137.4.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES