Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1998 Jan;10(1):105–117. doi: 10.1105/tpc.10.1.105

Molecular characterization of a carbon transporter in plastids from heterotrophic tissues: the glucose 6-phosphate/phosphate antiporter.

B Kammerer 1, K Fischer 1, B Hilpert 1, S Schubert 1, M Gutensohn 1, A Weber 1, U I Flügge 1
PMCID: PMC143937  PMID: 9477574

Abstract

Plastids of nongreen tissues import carbon as a source of biosynthetic pathways and energy. Within plastids, carbon can be used in the biosynthesis of starch or as a substrate for the oxidative pentose phosphate pathway, for example. We have used maize endosperm to purify a plastidic glucose 6-phosphate/phosphate translocator (GPT). The corresponding cDNA was isolated from maize endosperm as well as from tissues of pea roots and potato tubers. Analysis of the primary sequences of the cDNAs revealed that the GPT proteins have a high degree of identity with each other but share only approximately 38% identical amino acids with members of both the triose phosphate/phosphate translocator (TPT) and the phosphoenolpyruvate/phosphate translocator (PPT) families. Thus, the GPTs represent a third group of plastidic phosphate antiporters. All three classes of phosphate translocator genes show differential patterns of expression. Whereas the TPT gene is predominantly present in tissues that perform photosynthetic carbon metabolism and the PPT gene appears to be ubiquitously expressed, the expression of the GPT gene is mainly restricted to heterotrophic tissues. Expression of the coding region of the GPT in transformed yeast cells and subsequent transport experiments with the purified protein demonstrated that the GPT protein mediates a 1:1 exchange of glucose 6-phosphate mainly with inorganic phosphate and triose phosphates. Glucose 6-phosphate imported via the GPT can thus be used either for starch biosynthesis, during which process inorganic phosphate is released, or as a substrate for the oxidative pentose phosphate pathway, yielding triose phosphates.

Full Text

The Full Text of this article is available as a PDF (215.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alban C., Joyard J., Douce R. Preparation and characterization of envelope membranes from nongreen plastids. Plant Physiol. 1988 Nov;88(3):709–717. doi: 10.1104/pp.88.3.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Borchert S., Harborth J., Schunemann D., Hoferichter P., Heldt H. W. Studies of the Enzymic Capacities and Transport Properties of Pea Root Plastids. Plant Physiol. 1993 Jan;101(1):303–312. doi: 10.1104/pp.101.1.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Capaldi R. A., Vanderkooi G. The low polarity of many membrane proteins. Proc Natl Acad Sci U S A. 1972 Apr;69(4):930–932. doi: 10.1073/pnas.69.4.930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Denyer K., Dunlap F., Thorbjørnsen T., Keeling P., Smith A. M. The major form of ADP-glucose pyrophosphorylase in maize endosperm is extra-plastidial. Plant Physiol. 1996 Oct;112(2):779–785. doi: 10.1104/pp.112.2.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eckerskorn C., Mewes W., Goretzki H., Lottspeich F. A new siliconized-glass fiber as support for protein-chemical analysis of electroblotted proteins. Eur J Biochem. 1988 Oct 1;176(3):509–519. doi: 10.1111/j.1432-1033.1988.tb14308.x. [DOI] [PubMed] [Google Scholar]
  7. Entwistle G., Rees T. A. Enzymic capacities of amyloplasts from wheat (Triticum aestivum) endosperm. Biochem J. 1988 Oct 15;255(2):391–396. doi: 10.1042/bj2550391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fischer K., Arbinger B., Kammerer B., Busch C., Brink S., Wallmeier H., Sauer N., Eckerskorn C., Flügge U. I. Cloning and in vivo expression of functional triose phosphate/phosphate translocators from C3- and C4-plants: evidence for the putative participation of specific amino acid residues in the recognition of phosphoenolpyruvate. Plant J. 1994 Feb;5(2):215–226. doi: 10.1046/j.1365-313x.1994.05020215.x. [DOI] [PubMed] [Google Scholar]
  9. Fischer K., Kammerer B., Gutensohn M., Arbinger B., Weber A., Häusler R. E., Flügge U. I. A new class of plastidic phosphate translocators: a putative link between primary and secondary metabolism by the phosphoenolpyruvate/phosphate antiporter. Plant Cell. 1997 Mar;9(3):453–462. doi: 10.1105/tpc.9.3.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fischer K., Weber A., Brink S., Arbinger B., Schünemann D., Borchert S., Heldt H. W., Popp B., Benz R., Link T. A. Porins from plants. Molecular cloning and functional characterization of two new members of the porin family. J Biol Chem. 1994 Oct 14;269(41):25754–25760. [PubMed] [Google Scholar]
  11. Flügge U. I., Fischer K., Gross A., Sebald W., Lottspeich F., Eckerskorn C. The triose phosphate-3-phosphoglycerate-phosphate translocator from spinach chloroplasts: nucleotide sequence of a full-length cDNA clone and import of the in vitro synthesized precursor protein into chloroplasts. EMBO J. 1989 Jan;8(1):39–46. doi: 10.1002/j.1460-2075.1989.tb03346.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Flügge U. I. Reaction mechanism and asymmetric orientation of the reconstituted chloroplast phosphate translocator. Biochim Biophys Acta. 1992 Sep 21;1110(1):112–118. doi: 10.1016/0005-2736(92)90301-2. [DOI] [PubMed] [Google Scholar]
  13. Flügge U. I., Weber A. A rapid method for measuring organelle-specific substrate transport in homogenates from plant tissues. Planta. 1994;194(2):181–185. [PubMed] [Google Scholar]
  14. Hedrich R., Raschke K., Stitt M. A role for fructose 2,6-bisphosphate in regulating carbohydrate metabolism in guard cells. Plant Physiol. 1985 Dec;79(4):977–982. doi: 10.1104/pp.79.4.977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Higgins D. G., Bleasby A. J., Fuchs R. CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci. 1992 Apr;8(2):189–191. doi: 10.1093/bioinformatics/8.2.189. [DOI] [PubMed] [Google Scholar]
  16. Journet E. P., Douce R. Enzymic capacities of purified cauliflower bud plastids for lipid synthesis and carbohydrate metabolism. Plant Physiol. 1985 Oct;79(2):458–467. doi: 10.1104/pp.79.2.458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Klösgen R. B., Saedler H., Weil J. H. The amyloplast-targeting transit peptide of the waxy protein of maize also mediates protein transport in vitro into chloroplasts. Mol Gen Genet. 1989 May;217(1):155–161. doi: 10.1007/BF00330955. [DOI] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Li H. M., Sullivan T. D., Keegstra K. Information for targeting to the chloroplastic inner envelope membrane is contained in the mature region of the maize Bt1-encoded protein. J Biol Chem. 1992 Sep 15;267(26):18999–19004. [PubMed] [Google Scholar]
  20. Liu T. T., Shannon J. C. Measurement of Metabolites Associated with Nonaqueously Isolated Starch Granules from Immature Zea mays L. Endosperm. Plant Physiol. 1981 Mar;67(3):525–529. doi: 10.1104/pp.67.3.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Loddenkötter B., Kammerer B., Fischer K., Flügge U. I. Expression of the functional mature chloroplast triose phosphate translocator in yeast internal membranes and purification of the histidine-tagged protein by a single metal-affinity chromatography step. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2155–2159. doi: 10.1073/pnas.90.6.2155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Neuhaus H. E., Batz O., Thom E., Scheibe R. Purification of highly intact plastids from various heterotrophic plant tissues: analysis of enzymic equipment and precursor dependency for starch biosynthesis. Biochem J. 1993 Dec 1;296(Pt 2):395–401. doi: 10.1042/bj2960395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Overlach S., Diekmann W., Raschke K. Phosphate Translocator of Isolated Guard-Cell Chloroplasts from Pisum sativum L. Transports Glucose-6-Phosphate. Plant Physiol. 1993 Apr;101(4):1201–1207. doi: 10.1104/pp.101.4.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Quick W. P., Neuhaus H. E. Evidence for two types of phosphate translocators in sweet-pepper (Capsicum annum L.) fruit chromoplasts. Biochem J. 1996 Nov 15;320(Pt 1):7–10. doi: 10.1042/bj3200007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Quick W. P., Scheibe R., Neuhaus H. E. Induction of Hexose-Phosphate Translocator Activity in Spinach Chloroplasts. Plant Physiol. 1995 Sep;109(1):113–121. doi: 10.1104/pp.109.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Russell P., Nurse P. cdc25+ functions as an inducer in the mitotic control of fission yeast. Cell. 1986 Apr 11;45(1):145–153. doi: 10.1016/0092-8674(86)90546-5. [DOI] [PubMed] [Google Scholar]
  27. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  28. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schaefer B. C. Revolutions in rapid amplification of cDNA ends: new strategies for polymerase chain reaction cloning of full-length cDNA ends. Anal Biochem. 1995 May 20;227(2):255–273. doi: 10.1006/abio.1995.1279. [DOI] [PubMed] [Google Scholar]
  30. Schulz B., Frommer W. B., Flügge U. I., Hummel S., Fischer K., Willmitzer L. Expression of the triose phosphate translocator gene from potato is light dependent and restricted to green tissues. Mol Gen Genet. 1993 Apr;238(3):357–361. doi: 10.1007/BF00291994. [DOI] [PubMed] [Google Scholar]
  31. Schwarz M., Gross A., Steinkamp T., Flügge U. I., Wagner R. Ion channel properties of the reconstituted chloroplast triose phosphate/phosphate translocator. J Biol Chem. 1994 Nov 25;269(47):29481–29489. [PubMed] [Google Scholar]
  32. Sullivan T. D., Kaneko Y. The maize brittle 1 gene encodes amyloplast membrane polypeptides. Planta. 1995;196(3):477–484. doi: 10.1007/BF00203647. [DOI] [PubMed] [Google Scholar]
  33. Sullivan T. D., Strelow L. I., Illingworth C. A., Phillips R. L., Nelson O. E., Jr Analysis of maize brittle-1 alleles and a defective Suppressor-mutator-induced mutable allele. Plant Cell. 1991 Dec;3(12):1337–1348. doi: 10.1105/tpc.3.12.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tetlow I. J., Bowsher C. G., Emes M. J. Reconstitution of the hexose phosphate translocator from the envelope membranes of wheat endosperm amyloplasts. Biochem J. 1996 Nov 1;319(Pt 3):717–723. doi: 10.1042/bj3190717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Weber A., Menzlaff E., Arbinger B., Gutensohn M., Eckerskorn C., Flügge U. I. The 2-oxoglutarate/malate translocator of chloroplast envelope membranes: molecular cloning of a transporter containing a 12-helix motif and expression of the functional protein in yeast cells. Biochemistry. 1995 Feb 28;34(8):2621–2627. doi: 10.1021/bi00008a028. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES