Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1998 Oct;10(10):1649–1662. doi: 10.1105/tpc.10.10.1649

age Mutants of Arabidopsis exhibit altered auxin-regulated gene expression.

Y Oono 1, Q G Chen 1, P J Overvoorde 1, C Köhler 1, A Theologis 1
PMCID: PMC143942  PMID: 9761792

Abstract

An Arabidopsis transgenic line was constructed expressing beta-glucuronidase (GUS) via the auxin-responsive domains (AuxRDs) A and B (BA-GUS) of the PS-IAA4/5 gene in an indoleacetic acid (IAA)-dependent fashion. GUS expression was preferentially enhanced in the root elongation zone after treatment of young seedlings with 10(-7) M IAA. Expression of the BA-GUS gene in the axr1, axr4, and aux1 mutants required 10- to 100-fold higher auxin concentration than that in the wild-type background. GUS expression was nil in the axr 2 and axr 3 mutants. The transgene was used to isolate mutants exhibiting altered auxin-responsive gene expression (age). Two mutants, age1 and age2, were isolated and characterized. age1 showed enhanced sensitivity to IAA, with strong GUS expression localized in the root elongation zone in the presence of 10(-8) M IAA. In contrast, age2 exhibited ectopic GUS expression associated with the root vascular tissue, even in the absence of exogenous IAA. Morphological and molecular analyses indicated that the age1 and age2 alleles are involved in the regulation of gene expression in response to IAA.

Full Text

The Full Text of this article is available as a PDF (21.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abel S., Ballas N., Wong L. M., Theologis A. DNA elements responsive to auxin. Bioessays. 1996 Aug;18(8):647–654. doi: 10.1002/bies.950180808. [DOI] [PubMed] [Google Scholar]
  2. Abel S., Nguyen M. D., Theologis A. The PS-IAA4/5-like family of early auxin-inducible mRNAs in Arabidopsis thaliana. J Mol Biol. 1995 Aug 25;251(4):533–549. doi: 10.1006/jmbi.1995.0454. [DOI] [PubMed] [Google Scholar]
  3. Abel S., Theologis A. Early genes and auxin action. Plant Physiol. 1996 May;111(1):9–17. doi: 10.1104/pp.111.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ballas N., Wong L. M., Ke M., Theologis A. Two auxin-responsive domains interact positively to induce expression of the early indoleacetic acid-inducible gene PS-IAA4/5. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3483–3487. doi: 10.1073/pnas.92.8.3483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ballas N., Wong L. M., Theologis A. Identification of the auxin-responsive element, AuxRE, in the primary indoleacetic acid-inducible gene, PS-IAA4/5, of pea (Pisum sativum). J Mol Biol. 1993 Oct 20;233(4):580–596. doi: 10.1006/jmbi.1993.1537. [DOI] [PubMed] [Google Scholar]
  6. Bell C. J., Ecker J. R. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics. 1994 Jan 1;19(1):137–144. doi: 10.1006/geno.1994.1023. [DOI] [PubMed] [Google Scholar]
  7. Bowling S. A., Guo A., Cao H., Gordon A. S., Klessig D. F., Dong X. A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. Plant Cell. 1994 Dec;6(12):1845–1857. doi: 10.1105/tpc.6.12.1845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Conner T. W., Goekjian V. H., LaFayette P. R., Key J. L. Structure and expression of two auxin-inducible genes from Arabidopsis. Plant Mol Biol. 1990 Oct;15(4):623–632. doi: 10.1007/BF00017836. [DOI] [PubMed] [Google Scholar]
  9. Estelle M. The plant hormone auxin: insight in sight. Bioessays. 1992 Jul;14(7):439–444. doi: 10.1002/bies.950140703. [DOI] [PubMed] [Google Scholar]
  10. Gil P., Liu Y., Orbović V., Verkamp E., Poff K. L., Green P. J. Characterization of the auxin-inducible SAUR-AC1 gene for use as a molecular genetic tool in Arabidopsis. Plant Physiol. 1994 Feb;104(2):777–784. doi: 10.1104/pp.104.2.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hajdukiewicz P., Svab Z., Maliga P. The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol. 1994 Sep;25(6):989–994. doi: 10.1007/BF00014672. [DOI] [PubMed] [Google Scholar]
  12. Haseloff J., Siemering K. R., Prasher D. C., Hodge S. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2122–2127. doi: 10.1073/pnas.94.6.2122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hobbie L., Estelle M. Genetic approaches to auxin action. Plant Cell Environ. 1994 Jun;17(6):525–540. doi: 10.1111/j.1365-3040.1994.tb00147.x. [DOI] [PubMed] [Google Scholar]
  14. Hobbie L., Estelle M. The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. Plant J. 1995 Feb;7(2):211–220. doi: 10.1046/j.1365-313x.1995.7020211.x. [DOI] [PubMed] [Google Scholar]
  15. Jackson J. A., Fuglevand G., Brown B. A., Shaw M. J., Jenkins G. I. Isolation of Arabidopsis mutants altered in the light-regulation of chalcone synthase gene expression using a transgenic screening approach. Plant J. 1995 Sep;8(3):369–380. doi: 10.1046/j.1365-313x.1995.08030369.x. [DOI] [PubMed] [Google Scholar]
  16. Kende H., Zeevaart JAD. The Five "Classical" Plant Hormones. Plant Cell. 1997 Jul;9(7):1197–1210. doi: 10.1105/tpc.9.7.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Key J. L. Modulation of gene expression by auxin. Bioessays. 1989 Aug-Sep;11(2-3):52–58. doi: 10.1002/bies.950110204. [DOI] [PubMed] [Google Scholar]
  18. Kim J., Harter K., Theologis A. Protein-protein interactions among the Aux/IAA proteins. Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):11786–11791. doi: 10.1073/pnas.94.22.11786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lehman A., Black R., Ecker J. R. HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Cell. 1996 Apr 19;85(2):183–194. doi: 10.1016/s0092-8674(00)81095-8. [DOI] [PubMed] [Google Scholar]
  20. Leyser H. M., Pickett F. B., Dharmasiri S., Estelle M. Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter. Plant J. 1996 Sep;10(3):403–413. doi: 10.1046/j.1365-313x.1996.10030403.x. [DOI] [PubMed] [Google Scholar]
  21. Li Hm., Culligan K., Dixon R. A., Chory J. CUE1: A Mesophyll Cell-Specific Positive Regulator of Light-Controlled Gene Expression in Arabidopsis. Plant Cell. 1995 Oct;7(10):1599–1610. doi: 10.1105/tpc.7.10.1599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lincoln C., Britton J. H., Estelle M. Growth and development of the axr1 mutants of Arabidopsis. Plant Cell. 1990 Nov;2(11):1071–1080. doi: 10.1105/tpc.2.11.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Liu Y. G., Mitsukawa N., Oosumi T., Whittier R. F. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 1995 Sep;8(3):457–463. doi: 10.1046/j.1365-313x.1995.08030457.x. [DOI] [PubMed] [Google Scholar]
  24. Martin T., Hellmann H., Schmidt R., Willmitzer L., Frommer W. B. Identification of mutants in metabolically regulated gene expression. Plant J. 1997 Jan;11(1):53–62. doi: 10.1046/j.1365-313x.1997.11010053.x. [DOI] [PubMed] [Google Scholar]
  25. Masucci J. D., Rerie W. G., Foreman D. R., Zhang M., Galway M. E., Marks M. D., Schiefelbein J. W. The homeobox gene GLABRA2 is required for position-dependent cell differentiation in the root epidermis of Arabidopsis thaliana. Development. 1996 Apr;122(4):1253–1260. doi: 10.1242/dev.122.4.1253. [DOI] [PubMed] [Google Scholar]
  26. Murray M. G., Thompson W. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980 Oct 10;8(19):4321–4325. doi: 10.1093/nar/8.19.4321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Norris S. R., Meyer S. E., Callis J. The intron of Arabidopsis thaliana polyubiquitin genes is conserved in location and is a quantitative determinant of chimeric gene expression. Plant Mol Biol. 1993 Mar;21(5):895–906. doi: 10.1007/BF00027120. [DOI] [PubMed] [Google Scholar]
  28. Okada K., Shimura Y. Reversible root tip rotation in Arabidopsis seedlings induced by obstacle-touching stimulus. Science. 1990 Oct 12;250(4978):274–276. doi: 10.1126/science.250.4978.274. [DOI] [PubMed] [Google Scholar]
  29. Pickett F. B., Wilson A. K., Estelle M. The aux1 Mutation of Arabidopsis Confers Both Auxin and Ethylene Resistance. Plant Physiol. 1990 Nov;94(3):1462–1466. doi: 10.1104/pp.94.3.1462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rouse D., Mackay P., Stirnberg P., Estelle M., Leyser O. Changes in auxin response from mutations in an AUX/IAA gene. Science. 1998 Feb 27;279(5355):1371–1373. doi: 10.1126/science.279.5355.1371. [DOI] [PubMed] [Google Scholar]
  31. Susek R. E., Ausubel F. M., Chory J. Signal transduction mutants of Arabidopsis uncouple nuclear CAB and RBCS gene expression from chloroplast development. Cell. 1993 Sep 10;74(5):787–799. doi: 10.1016/0092-8674(93)90459-4. [DOI] [PubMed] [Google Scholar]
  32. Theologis A., Huynh T. V., Davis R. W. Rapid induction of specific mRNAs by auxin in pea epicotyl tissue. J Mol Biol. 1985 May 5;183(1):53–68. doi: 10.1016/0022-2836(85)90280-3. [DOI] [PubMed] [Google Scholar]
  33. Timpte C., Lincoln C., Pickett F. B., Turner J., Estelle M. The AXR1 and AUX1 genes of Arabidopsis function in separate auxin-response pathways. Plant J. 1995 Oct;8(4):561–569. doi: 10.1046/j.1365-313x.1995.8040561.x. [DOI] [PubMed] [Google Scholar]
  34. Valvekens D., Van Montagu M., Van Lijsebettens M. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5536–5540. doi: 10.1073/pnas.85.15.5536. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES