Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1998 Oct;10(10):1677–1690. doi: 10.1105/tpc.10.10.1677

The Arabidopsis DIMINUTO/DWARF1 gene encodes a protein involved in steroid synthesis.

U Klahre 1, T Noguchi 1, S Fujioka 1, S Takatsuto 1, T Yokota 1, T Nomura 1, S Yoshida 1, N H Chua 1
PMCID: PMC143945  PMID: 9761794

Abstract

We have identified the function of the Arabidopsis DIMINUTO/DWARF1 (DIM/DWF1) gene by analyzing the dim mutant, a severe dwarf with greatly reduced fertility. Both the mutant phenotype and gene expression could be rescued by the addition of exogenous brassinolide. Analysis of endogenous sterols demonstrated that dim accumulates 24-methylenecholesterol but is deficient in campesterol, an early precursor of brassinolide. In addition, we show that dim is deficient in brassinosteroids as well. Feeding experiments using deuterium-labeled 24-methylenecholesterol and 24-methyldesmosterol confirmed that DIM/DWF1 is involved in both the isomerization and reduction of the Delta24(28) bond. This conversion is not required in cholesterol biosynthesis in animals but is a key step in the biosynthesis of plant sterols. Transient expression of a green fluorescent protein-DIM/DWF1 fusion protein and biochemical experiments showed that DIM/DWF1 is an integral membrane protein that most probably is associated with the endoplasmic reticulum.

Full Text

The Full Text of this article is available as a PDF (764.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed S. U., Bar-Peled M., Raikhel N. V. Cloning and subcellular location of an Arabidopsis receptor-like protein that shares common features with protein-sorting receptors of eukaryotic cells. Plant Physiol. 1997 May;114(1):325–336. doi: 10.1104/pp.114.1.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Azpiroz R., Wu Y., LoCascio J. C., Feldmann K. A. An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation. Plant Cell. 1998 Feb;10(2):219–230. doi: 10.1105/tpc.10.2.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barnes S. A., Nishizawa N. K., Quaggio R. B., Whitelam G. C., Chua N. H. Far-red light blocks greening of Arabidopsis seedlings via a phytochrome A-mediated change in plastid development. Plant Cell. 1996 Apr;8(4):601–615. doi: 10.1105/tpc.8.4.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Choe S., Dilkes B. P., Fujioka S., Takatsuto S., Sakurai A., Feldmann K. A. The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22alpha-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell. 1998 Feb;10(2):231–243. doi: 10.1105/tpc.10.2.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clouse S. D., Langford M., McMorris T. C. A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol. 1996 Jul;111(3):671–678. doi: 10.1104/pp.111.3.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clouse S. D. Molecular genetic studies confirm the role of brassinosteroids in plant growth and development. Plant J. 1996 Jul;10(1):1–8. doi: 10.1046/j.1365-313x.1996.10010001.x. [DOI] [PubMed] [Google Scholar]
  7. Creelman R. A., Mullet J. E. Oligosaccharins, brassinolides, and jasmonates: nontraditional regulators of plant growth, development, and gene expression. Plant Cell. 1997 Jul;9(7):1211–1223. doi: 10.1105/tpc.9.7.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Denecke J., Carlsson L. E., Vidal S., Höglund A. S., Ek B., van Zeijl M. J., Sinjorgo K. M., Palva E. T. The tobacco homolog of mammalian calreticulin is present in protein complexes in vivo. Plant Cell. 1995 Apr;7(4):391–406. doi: 10.1105/tpc.7.4.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fujioka S., Li J., Choi Y. H., Seto H., Takatsuto S., Noguchi T., Watanabe T., Kuriyama H., Yokota T., Chory J. The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis. Plant Cell. 1997 Nov;9(11):1951–1962. doi: 10.1105/tpc.9.11.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fujioka S., Sakurai A. Brassinosteroids. Nat Prod Rep. 1997 Feb;14(1):1–10. doi: 10.1039/np9971400001. [DOI] [PubMed] [Google Scholar]
  11. Joyard J., Billecocq A., Bartlett S. G., Block M. A., Chua N. H., Douce R. Localization of polypeptides to the cytosolic side of the outer envelope membrane of spinach chloroplasts. J Biol Chem. 1983 Aug 25;258(16):10000–10006. [PubMed] [Google Scholar]
  12. Li J., Chory J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell. 1997 Sep 5;90(5):929–938. doi: 10.1016/s0092-8674(00)80357-8. [DOI] [PubMed] [Google Scholar]
  13. Li J., Nagpal P., Vitart V., McMorris T. C., Chory J. A role for brassinosteroids in light-dependent development of Arabidopsis. Science. 1996 Apr 19;272(5260):398–401. doi: 10.1126/science.272.5260.398. [DOI] [PubMed] [Google Scholar]
  14. Liang P., Pardee A. B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science. 1992 Aug 14;257(5072):967–971. doi: 10.1126/science.1354393. [DOI] [PubMed] [Google Scholar]
  15. Lozano R., Lusby W. R., Chitwood D. J., Thompson M. J., Svoboda J. A. Inhibition of C28 and C29 phytosterol metabolism by N,N-dimethyldodecanamine in the nematode Caenorhabditis elegans. Lipids. 1985 Mar;20(3):158–166. doi: 10.1007/BF02534248. [DOI] [PubMed] [Google Scholar]
  16. Mathur J., Szabados L., Schaefer S., Grunenberg B., Lossow A., Jonas-Straube E., Schell J., Koncz C., Koncz-Kálmán Z. Gene identification with sequenced T-DNA tags generated by transformation of Arabidopsis cell suspension. Plant J. 1998 Mar;13(5):707–716. doi: 10.1046/j.1365-313x.1998.00059.x. [DOI] [PubMed] [Google Scholar]
  17. Mullen R. T., Lee M. S., Trelease R. N. Identification of the peroxisomal targeting signal for cottonseed catalase. Plant J. 1997 Aug;12(2):313–322. doi: 10.1046/j.1365-313x.1997.12020313.x. [DOI] [PubMed] [Google Scholar]
  18. Mushegian A. R., Koonin E. V. A putative FAD-binding domain in a distinct group of oxidases including a protein involved in plant development. Protein Sci. 1995 Jun;4(6):1243–1244. doi: 10.1002/pro.5560040623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nes W. R., Cannon J. W., Thampi N. S., Malya P. A. Lack of mammalian reduction or alkylation of 24-methylenecholesterol. J Biol Chem. 1973 Jan 25;248(2):484–487. [PubMed] [Google Scholar]
  20. Nomura T., Nakayama M., Reid J. B., Takeuchi Y., Yokota T. Blockage of Brassinosteroid Biosynthesis and Sensitivity Causes Dwarfism in Garden Pea. Plant Physiol. 1997 Jan;113(1):31–37. doi: 10.1104/pp.113.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Okazawa K., Sato Y., Nakagawa T., Asada K., Kato I., Tomita E., Nishitani K. Molecular cloning and cDNA sequencing of endoxyloglucan transferase, a novel class of glycosyltransferase that mediates molecular grafting between matrix polysaccharides in plant cell walls. J Biol Chem. 1993 Dec 5;268(34):25364–25368. [PubMed] [Google Scholar]
  22. Picard D. Molecular endocrinology. Steroids tickle cells inside and out. Nature. 1998 Apr 2;392(6675):437–438. doi: 10.1038/33014. [DOI] [PubMed] [Google Scholar]
  23. Sakurai A., Fujioka S. Studies on biosynthesis of brassinosteroids. Biosci Biotechnol Biochem. 1997 May;61(5):757–762. doi: 10.1271/bbb.61.757. [DOI] [PubMed] [Google Scholar]
  24. Schiff N. M., Feldlaufer M. F. Neutral sterols of sawflies (Symphyta): their relationship to other Hymenoptera. Lipids. 1996 Apr;31(4):441–443. doi: 10.1007/BF02522933. [DOI] [PubMed] [Google Scholar]
  25. Svoboda J. A., Ross S. A., Nes W. D. Comparative studies of metabolism of 4-desmethyl, 4-monomethyl and 4,4-dimethyl sterols in Manduca sexta. Lipids. 1995 Jan;30(1):91–94. doi: 10.1007/BF02537047. [DOI] [PubMed] [Google Scholar]
  26. Szekeres M., Németh K., Koncz-Kálmán Z., Mathur J., Kauschmann A., Altmann T., Rédei G. P., Nagy F., Schell J., Koncz C. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell. 1996 Apr 19;85(2):171–182. doi: 10.1016/s0092-8674(00)81094-6. [DOI] [PubMed] [Google Scholar]
  27. Takahashi T., Gasch A., Nishizawa N., Chua N. H. The DIMINUTO gene of Arabidopsis is involved in regulating cell elongation. Genes Dev. 1995 Jan 1;9(1):97–107. doi: 10.1101/gad.9.1.97. [DOI] [PubMed] [Google Scholar]
  28. Twell D., Yamaguchi J., McCormick S. Pollen-specific gene expression in transgenic plants: coordinate regulation of two different tomato gene promoters during microsporogenesis. Development. 1990 Jul;109(3):705–713. doi: 10.1242/dev.109.3.705. [DOI] [PubMed] [Google Scholar]
  29. Valvekens D., Van Montagu M., Van Lijsebettens M. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5536–5540. doi: 10.1073/pnas.85.15.5536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Xu W., Campbell P., Vargheese A. K., Braam J. The Arabidopsis XET-related gene family: environmental and hormonal regulation of expression. Plant J. 1996 Jun;9(6):879–889. doi: 10.1046/j.1365-313x.1996.9060879.x. [DOI] [PubMed] [Google Scholar]
  31. Xu W., Purugganan M. M., Polisensky D. H., Antosiewicz D. M., Fry S. C., Braam J. Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell. 1995 Oct;7(10):1555–1567. doi: 10.1105/tpc.7.10.1555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zurek D. M., Clouse S. D. Molecular cloning and characterization of a brassinosteroid-regulated gene from elongating soybean (Glycine max L.) epicotyls. Plant Physiol. 1994 Jan;104(1):161–170. doi: 10.1104/pp.104.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. van der Krol A. R., Chua N. H. The basic domain of plant B-ZIP proteins facilitates import of a reporter protein into plant nuclei. Plant Cell. 1991 Jul;3(7):667–675. doi: 10.1105/tpc.3.7.667. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES