Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1998 Oct;10(10):1759–1768. doi: 10.1105/tpc.10.10.1759

Targeting of active sialyltransferase to the plant Golgi apparatus.

E G Wee 1, D J Sherrier 1, T A Prime 1, P Dupree 1
PMCID: PMC143948  PMID: 9761801

Abstract

Glycosyltransferases in the Golgi apparatus synthesize cell wall polysaccharides and elaborate the complex glycans of glycoproteins. To investigate the targeting of this type of enzyme to plant Golgi compartments, we generated transgenic Arabidopsis plants expressing alpha-2,6-sialyltransferase, a glycosyltransferase of the mammalian trans-Golgi cisternae and the trans-Golgi network. Biochemical analysis as well as immunolight and immunoelectron microscopy of these plants indicate that the protein is targeted specifically to the Golgi apparatus. Moreover, the protein is predominantly localized to the cisternae and membranes of the trans side of the organelle. When supplied with the appropriate substrates, the enzyme has significant alpha-2,6-sialyltransferase activity. These results indicate a conservation of glycosyltransferase targeting mechanisms between plant and mammalian cells and also demonstrate that glycosyltransferases can be subcompartmentalized to specific cisternae of the plant Golgi apparatus.

Full Text

The Full Text of this article is available as a PDF (248.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. An G. Development of plant promoter expression vectors and their use for analysis of differential activity of nopaline synthase promoter in transformed tobacco cells. Plant Physiol. 1986 May;81(1):86–91. doi: 10.1104/pp.81.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Campbell J. A., Davies G. J., Bulone V., Henrissat B. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J. 1997 Sep 15;326(Pt 3):929–939. doi: 10.1042/bj3260929u. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carey D. J., Hirschberg C. B. Kinetics of glycosylation and intracellular transport of sialoglycoproteins in mouse liver. J Biol Chem. 1980 May 10;255(9):4348–4354. [PubMed] [Google Scholar]
  4. Colley K. J. Golgi localization of glycosyltransferases: more questions than answers. Glycobiology. 1997 Feb;7(1):1–13. doi: 10.1093/glycob/7.1.1-b. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DeWitt N. D., Sussman M. R. Immunocytological localization of an epitope-tagged plasma membrane proton pump (H(+)-ATPase) in phloem companion cells. Plant Cell. 1995 Dec;7(12):2053–2067. doi: 10.1105/tpc.7.12.2053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dhugga K. S., Tiwari S. C., Ray P. M. A reversibly glycosylated polypeptide (RGP1) possibly involved in plant cell wall synthesis: purification, gene cloning, and trans-Golgi localization. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7679–7684. doi: 10.1073/pnas.94.14.7679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Driouich A., Zhang G. F., Staehelin L. A. Effect of brefeldin A on the structure of the Golgi apparatus and on the synthesis and secretion of proteins and polysaccharides in sycamore maple (Acer pseudoplatanus) suspension-cultured cells. Plant Physiol. 1993 Apr;101(4):1363–1373. doi: 10.1104/pp.101.4.1363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Duksin D., Mahoney W. C. Relationship of the structure and biological activity of the natural homologues of tunicamycin. J Biol Chem. 1982 Mar 25;257(6):3105–3109. [PubMed] [Google Scholar]
  9. Dupree P., Sherrier D. J. The plant Golgi apparatus. Biochim Biophys Acta. 1998 Aug 14;1404(1-2):259–270. doi: 10.1016/s0167-4889(98)00061-5. [DOI] [PubMed] [Google Scholar]
  10. Evans D. E., Clay P. J., Attree S., Fowke L. C. Visualization of Golgi apparatus in methacrylate embedded conifer embryo tissue using the monoclonal antibody JIM 84. Cell Biol Int. 1997 May;21(5):295–302. doi: 10.1006/cbir.1997.0145. [DOI] [PubMed] [Google Scholar]
  11. Gibeaut D. M., Carpita N. C. Biosynthesis of plant cell wall polysaccharides. FASEB J. 1994 Sep;8(12):904–915. doi: 10.1096/fasebj.8.12.8088456. [DOI] [PubMed] [Google Scholar]
  12. Gomez L., Chrispeels M. J. Complementation of an Arabidopsis thaliana mutant that lacks complex asparagine-linked glycans with the human cDNA encoding N-acetylglucosaminyltransferase I. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1829–1833. doi: 10.1073/pnas.91.5.1829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gomez L., Chrispeels M. J. Tonoplast and Soluble Vacuolar Proteins Are Targeted by Different Mechanisms. Plant Cell. 1993 Sep;5(9):1113–1124. doi: 10.1105/tpc.5.9.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Grove S. N., Bracker C. E., Morré D. J. Cytomembrane differentiation in the endoplasmic reticulum-Golgi apparatus-vesicle complex. Science. 1968 Jul 12;161(3837):171–173. doi: 10.1126/science.161.3837.171. [DOI] [PubMed] [Google Scholar]
  15. Hammond C., Helenius A. Quality control in the secretory pathway. Curr Opin Cell Biol. 1995 Aug;7(4):523–529. doi: 10.1016/0955-0674(95)80009-3. [DOI] [PubMed] [Google Scholar]
  16. Jenkins N., Parekh R. B., James D. C. Getting the glycosylation right: implications for the biotechnology industry. Nat Biotechnol. 1996 Aug;14(8):975–981. doi: 10.1038/nbt0896-975. [DOI] [PubMed] [Google Scholar]
  17. Kilby N. J., Davies G. J., Snaith M. R. FLP recombinase in transgenic plants: constitutive activity in stably transformed tobacco and generation of marked cell clones in Arabidopsis. Plant J. 1995 Nov;8(5):637–652. doi: 10.1046/j.1365-313x.1995.08050637.x. [DOI] [PubMed] [Google Scholar]
  18. Krezdorn C. H., Kleene R. B., Watzele M., Ivanov S. X., Hokke C. H., Kamerling J. P., Berger E. G. Human beta 1,4 galactosyltransferase and alpha 2,6 sialyltransferase expressed in Saccharomyces cerevisiae are retained as active enzymes in the endoplasmic reticulum. Eur J Biochem. 1994 Mar 15;220(3):809–817. doi: 10.1111/j.1432-1033.1994.tb18683.x. [DOI] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Lynch M. A., Staehelin L. A. Domain-specific and cell type-specific localization of two types of cell wall matrix polysaccharides in the clover root tip. J Cell Biol. 1992 Jul;118(2):467–479. doi: 10.1083/jcb.118.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Maley F., Trimble R. B., Tarentino A. L., Plummer T. H., Jr Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases. Anal Biochem. 1989 Aug 1;180(2):195–204. doi: 10.1016/0003-2697(89)90115-2. [DOI] [PubMed] [Google Scholar]
  22. Mellman I., Simons K. The Golgi complex: in vitro veritas? Cell. 1992 Mar 6;68(5):829–840. doi: 10.1016/0092-8674(92)90027-A. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moore P. J., Swords K. M., Lynch M. A., Staehelin L. A. Spatial organization of the assembly pathways of glycoproteins and complex polysaccharides in the Golgi apparatus of plants. J Cell Biol. 1991 Feb;112(4):589–602. doi: 10.1083/jcb.112.4.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Morsomme P., de Kerchove d'Exaerde A., De Meester S., Thinès D., Goffeau A., Boutry M. Single point mutations in various domains of a plant plasma membrane H(+)-ATPase expressed in Saccharomyces cerevisiae increase H(+)-pumping and permit yeast growth at low pH. EMBO J. 1996 Oct 15;15(20):5513–5526. [PMC free article] [PubMed] [Google Scholar]
  25. Munro S. A comparison of the transmembrane domains of Golgi and plasma membrane proteins. Biochem Soc Trans. 1995 Aug;23(3):527–530. doi: 10.1042/bst0230527. [DOI] [PubMed] [Google Scholar]
  26. Munro S. An investigation of the role of transmembrane domains in Golgi protein retention. EMBO J. 1995 Oct 2;14(19):4695–4704. doi: 10.1002/j.1460-2075.1995.tb00151.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Munro S. Localization of proteins to the Golgi apparatus. Trends Cell Biol. 1998 Jan;8(1):11–15. doi: 10.1016/S0962-8924(97)01197-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Munro S. Sequences within and adjacent to the transmembrane segment of alpha-2,6-sialyltransferase specify Golgi retention. EMBO J. 1991 Dec;10(12):3577–3588. doi: 10.1002/j.1460-2075.1991.tb04924.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Napier R. M., Fowke L. C., Hawes C., Lewis M., Pelham H. R. Immunological evidence that plants use both HDEL and KDEL for targeting proteins to the endoplasmic reticulum. J Cell Sci. 1992 Jun;102(Pt 2):261–271. doi: 10.1242/jcs.102.2.261. [DOI] [PubMed] [Google Scholar]
  30. Narimatsu H. Recent progress in molecular cloning of glycosyltransferase genes of eukaryotes. Microbiol Immunol. 1994;38(7):489–504. doi: 10.1111/j.1348-0421.1994.tb01814.x. [DOI] [PubMed] [Google Scholar]
  31. Nilsson T., Hoe M. H., Slusarewicz P., Rabouille C., Watson R., Hunte F., Watzele G., Berger E. G., Warren G. Kin recognition between medial Golgi enzymes in HeLa cells. EMBO J. 1994 Feb 1;13(3):562–574. doi: 10.1002/j.1460-2075.1994.tb06294.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nilsson T., Lucocq J. M., Mackay D., Warren G. The membrane spanning domain of beta-1,4-galactosyltransferase specifies trans Golgi localization. EMBO J. 1991 Dec;10(12):3567–3575. doi: 10.1002/j.1460-2075.1991.tb04923.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Paulson J. C., Colley K. J. Glycosyltransferases. Structure, localization, and control of cell type-specific glycosylation. J Biol Chem. 1989 Oct 25;264(30):17615–17618. [PubMed] [Google Scholar]
  34. Pedrazzini E., Giovinazzo G., Bielli A., de Virgilio M., Frigerio L., Pesca M., Faoro F., Bollini R., Ceriotti A., Vitale A. Protein quality control along the route to the plant vacuole. Plant Cell. 1997 Oct;9(10):1869–1880. doi: 10.1105/tpc.9.10.1869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Pelham H. R. Getting through the Golgi complex. Trends Cell Biol. 1998 Jan;8(1):45–49. doi: 10.1016/s0962-8924(97)01185-9. [DOI] [PubMed] [Google Scholar]
  36. Roth J., Taatjes D. J., Lucocq J. M., Weinstein J., Paulson J. C. Demonstration of an extensive trans-tubular network continuous with the Golgi apparatus stack that may function in glycosylation. Cell. 1985 Nov;43(1):287–295. doi: 10.1016/0092-8674(85)90034-0. [DOI] [PubMed] [Google Scholar]
  37. Satiat-Jeunemaitre B., Cole L., Bourett T., Howard R., Hawes C. Brefeldin A effects in plant and fungal cells: something new about vesicle trafficking? J Microsc. 1996 Feb;181(Pt 2):162–177. doi: 10.1046/j.1365-2818.1996.112393.x. [DOI] [PubMed] [Google Scholar]
  38. Satiat-Jeunemaitre B., Hawes C. G.A.T.T. (A General Agreement on Traffic and Transport) and Brefeldin A in Plant Cells. Plant Cell. 1994 Apr;6(4):463–467. doi: 10.1105/tpc.6.4.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Staehelin L. A., Driouich A. Brefeldin A Effects in Plants (Are Different Golgi Responses Caused by Different Sites of Action?). Plant Physiol. 1997 Jun;114(2):401–403. doi: 10.1104/pp.114.2.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Swift A. M., Machamer C. E. A Golgi retention signal in a membrane-spanning domain of coronavirus E1 protein. J Cell Biol. 1991 Oct;115(1):19–30. doi: 10.1083/jcb.115.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Taylor-Robinson S. D., Sargentoni J., Bell J. D., Saeed N., Changani K. K., Davidson B. R., Rolles K., Burroughs A. K., Hodgson H. J., Foster C. S. In vivo and in vitro hepatic 31P magnetic resonance spectroscopy and electron microscopy of the cirrhotic liver. Liver. 1997 Aug;17(4):198–209. doi: 10.1111/j.1600-0676.1997.tb00806.x. [DOI] [PubMed] [Google Scholar]
  42. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Van Larebeke N., Engler G., Holsters M., Van den Elsacker S., Zaenen I., Schilperoort R. A., Schell J. Large plasmid in Agrobacterium tumefaciens essential for crown gall-inducing ability. Nature. 1974 Nov 8;252(5479):169–170. doi: 10.1038/252169a0. [DOI] [PubMed] [Google Scholar]
  44. Weinstein J., Lee E. U., McEntee K., Lai P. H., Paulson J. C. Primary structure of beta-galactoside alpha 2,6-sialyltransferase. Conversion of membrane-bound enzyme to soluble forms by cleavage of the NH2-terminal signal anchor. J Biol Chem. 1987 Dec 25;262(36):17735–17743. [PubMed] [Google Scholar]
  45. Wong S. H., Low S. H., Hong W. The 17-residue transmembrane domain of beta-galactoside alpha 2,6-sialyltransferase is sufficient for Golgi retention. J Cell Biol. 1992 Apr;117(2):245–258. doi: 10.1083/jcb.117.2.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Yang W., Storrie B. Scattered Golgi elements during microtubule disruption are initially enriched in trans-Golgi proteins. Mol Biol Cell. 1998 Jan;9(1):191–207. doi: 10.1091/mbc.9.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Zhang G. F., Staehelin L. A. Functional compartmentation of the Golgi apparatus of plant cells : immunocytochemical analysis of high-pressure frozen- and freeze-substituted sycamore maple suspension culture cells. Plant Physiol. 1992 Jul;99(3):1070–1083. doi: 10.1104/pp.99.3.1070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. da Silva Conceiço A., Marty-Mazars D., Bassham D. C., Sanderfoot A. A., Marty F., Raikhel N. V. The syntaxin homolog AtPEP12p resides on a late post-Golgi compartment in plants. Plant Cell. 1997 Apr;9(4):571–582. [PMC free article] [PubMed] [Google Scholar]
  49. von Schaewen A., Sturm A., O'Neill J., Chrispeels M. J. Isolation of a mutant Arabidopsis plant that lacks N-acetyl glucosaminyl transferase I and is unable to synthesize Golgi-modified complex N-linked glycans. Plant Physiol. 1993 Aug;102(4):1109–1118. doi: 10.1104/pp.102.4.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES