Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1998 Nov;10(11):1889–1902. doi: 10.1105/tpc.10.11.1889

Accumulation of very-long-chain fatty acids in membrane glycerolipids is associated with dramatic alterations in plant morphology.

A A Millar 1, M Wrischer 1, L Kunst 1
PMCID: PMC143955  PMID: 9811796

Abstract

Transgenic Arabidopsis plants overexpressing the Arabidopsis FATTY ACID ELONGATION1 gene under the control of the 35S promoter from cauliflower mosaic virus accumulated very-long-chain fatty acids (VLCFAs) throughout the plant. In some transformants, C20 and C22 VLCFAs accounted for >30% of the total fatty acids, accumulating at the expense of C16 and C18 fatty acids. These C20 and C22 fatty acids were incorporated into all of the major membrane glycerolipid classes. Plants with a high VLCFA content displayed a dramatically altered morphology, which included the failure of flowering shoots to elongate, a modified spatial pattern of siliques, an altered floral phenotype, and a large accumulation of anthocyanins. In addition, these plants also exhibited a unique alteration of the chloroplast membrane structure. We discuss a possible role for VLCFAs in establishing the shape/curvature of the membranes, which in turn may affect the shape of the cell and ultimately that of the whole plant.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bafor M., Smith M. A., Jonsson L., Stobart K., Stymne S. Biosynthesis of vernoleate (cis-12-epoxyoctadeca-cis-9-enoate) in microsomal preparations from developing endosperm of Euphorbia lagascae. Arch Biochem Biophys. 1993 May 15;303(1):145–151. doi: 10.1006/abbi.1993.1265. [DOI] [PubMed] [Google Scholar]
  2. Bafor M., Smith M. A., Jonsson L., Stobart K., Stymne S. Ricinoleic acid biosynthesis and triacylglycerol assembly in microsomal preparations from developing castor-bean (Ricinus communis) endosperm. Biochem J. 1991 Dec 1;280(Pt 2):507–514. doi: 10.1042/bj2800507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Broun P., Somerville C. Accumulation of ricinoleic, lesquerolic, and densipolic acids in seeds of transgenic Arabidopsis plants that express a fatty acyl hydroxylase cDNA from castor bean. Plant Physiol. 1997 Mar;113(3):933–942. doi: 10.1104/pp.113.3.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Browse J., Warwick N., Somerville C. R., Slack C. R. Fluxes through the prokaryotic and eukaryotic pathways of lipid synthesis in the '16:3' plant Arabidopsis thaliana. Biochem J. 1986 Apr 1;235(1):25–31. doi: 10.1042/bj2350025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Creelman R. A., Tierney M. L., Mullet J. E. Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4938–4941. doi: 10.1073/pnas.89.11.4938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Delmer D. P., Amor Y. Cellulose biosynthesis. Plant Cell. 1995 Jul;7(7):987–1000. doi: 10.1105/tpc.7.7.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fehling E., Mukherjee K. D. Acyl-CoA elongase from a higher plant (Lunaria annua): metabolic intermediates of very-long-chain acyl-CoA products and substrate specificity. Biochim Biophys Acta. 1991 Apr 3;1082(3):239–246. doi: 10.1016/0005-2760(91)90198-q. [DOI] [PubMed] [Google Scholar]
  8. Hui S. W., Mason J. T., Huang C. Acyl chain interdigitation in saturated mixed-chain phosphatidylcholine bilayer dispersions. Biochemistry. 1984 Nov 6;23(23):5570–5577. doi: 10.1021/bi00318a029. [DOI] [PubMed] [Google Scholar]
  9. James D. W., Jr, Lim E., Keller J., Plooy I., Ralston E., Dooner H. K. Directed tagging of the Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene with the maize transposon activator. Plant Cell. 1995 Mar;7(3):309–319. doi: 10.1105/tpc.7.3.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Katavic V., Haughn G. W., Reed D., Martin M., Kunst L. In planta transformation of Arabidopsis thaliana. Mol Gen Genet. 1994 Nov 1;245(3):363–370. doi: 10.1007/BF00290117. [DOI] [PubMed] [Google Scholar]
  11. Lassner M. W., Lardizabal K., Metz J. G. A jojoba beta-Ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants. Plant Cell. 1996 Feb;8(2):281–292. doi: 10.1105/tpc.8.2.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lester R. L., Wells G. B., Oxford G., Dickson R. C. Mutant strains of Saccharomyces cerevisiae lacking sphingolipids synthesize novel inositol glycerophospholipids that mimic sphingolipid structures. J Biol Chem. 1993 Jan 15;268(2):845–856. [PubMed] [Google Scholar]
  13. Millar A. A., Kunst L. Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. Plant J. 1997 Jul;12(1):121–131. doi: 10.1046/j.1365-313x.1997.12010121.x. [DOI] [PubMed] [Google Scholar]
  14. Ohlrogge J., Browse J. Lipid biosynthesis. Plant Cell. 1995 Jul;7(7):957–970. doi: 10.1105/tpc.7.7.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Post-Beittenmiller Dusty. BIOCHEMISTRY AND MOLECULAR BIOLOGY OF WAX PRODUCTION IN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):405–430. doi: 10.1146/annurev.arplant.47.1.405. [DOI] [PubMed] [Google Scholar]
  16. Schneiter R., Hitomi M., Ivessa A. S., Fasch E. V., Kohlwein S. D., Tartakoff A. M. A yeast acetyl coenzyme A carboxylase mutant links very-long-chain fatty acid synthesis to the structure and function of the nuclear membrane-pore complex. Mol Cell Biol. 1996 Dec;16(12):7161–7172. doi: 10.1128/mcb.16.12.7161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schneiter R., Kohlwein S. D. Organelle structure, function, and inheritance in yeast: a role for fatty acid synthesis? Cell. 1997 Feb 21;88(4):431–434. doi: 10.1016/s0092-8674(00)81882-6. [DOI] [PubMed] [Google Scholar]
  18. Spychalla J. P., Kinney A. J., Browse J. Identification of an animal omega-3 fatty acid desaturase by heterologous expression in Arabidopsis. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1142–1147. doi: 10.1073/pnas.94.4.1142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stahl U., Banas A., Stymne S. Plant Microsomal Phospholipid Acyl Hydrolases Have Selectivities for Uncommon Fatty Acids. Plant Physiol. 1995 Mar;107(3):953–962. doi: 10.1104/pp.107.3.953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Taylor D. C., Weber N., Barton D. L., Underhill E. W., Hogge L. R., Weselake R. J., Pomeroy M. K. Triacylglycerol Bioassembly in Microspore-Derived Embryos of Brassica napus L. cv Reston. Plant Physiol. 1991 Sep;97(1):65–79. doi: 10.1104/pp.97.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Voelker T. A., Davies H. M. Alteration of the specificity and regulation of fatty acid synthesis of Escherichia coli by expression of a plant medium-chain acyl-acyl carrier protein thioesterase. J Bacteriol. 1994 Dec;176(23):7320–7327. doi: 10.1128/jb.176.23.7320-7327.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Voelker T. A., Worrell A. C., Anderson L., Bleibaum J., Fan C., Hawkins D. J., Radke S. E., Davies H. M. Fatty acid biosynthesis redirected to medium chains in transgenic oilseed plants. Science. 1992 Jul 3;257(5066):72–74. doi: 10.1126/science.1621095. [DOI] [PubMed] [Google Scholar]
  23. van de Loo F. J., Broun P., Turner S., Somerville C. An oleate 12-hydroxylase from Ricinus communis L. is a fatty acyl desaturase homolog. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6743–6747. doi: 10.1073/pnas.92.15.6743. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES