Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1998 Nov;10(11):1817–1832. doi: 10.1105/tpc.10.11.1817

The major resistance gene cluster in lettuce is highly duplicated and spans several megabases.

B C Meyers 1, D B Chin 1, K A Shen 1, S Sivaramakrishnan 1, D O Lavelle 1, Z Zhang 1, R W Michelmore 1
PMCID: PMC143960  PMID: 9811791

Abstract

At least 10 Dm genes conferring resistance to the oomycete downy mildew fungus Bremia lactucae map to the major resistance cluster in lettuce. We investigated the structure of this cluster in the lettuce cultivar Diana, which contains Dm3. A deletion breakpoint map of the chromosomal region flanking Dm3 was saturated with a variety of molecular markers. Several of these markers are components of a family of resistance gene candidates (RGC2) that encode a nucleotide binding site and a leucine-rich repeat region. These motifs are characteristic of plant disease resistance genes. Bacterial artificial chromosome clones were identified by using duplicated restriction fragment length polymorphism markers from the region, including the nucleotide binding site-encoding region of RGC2. Twenty-two distinct members of the RGC2 family were characterized from the bacterial artificial chromosomes; at least two additional family members exist. The RGC2 family is highly divergent; the nucleotide identity was as low as 53% between the most distantly related copies. These RGC2 genes span at least 3.5 Mb. Eighteen members were mapped on the deletion breakpoint map. A comparison between the phylogenetic and physical relationships of these sequences demonstrated that closely related copies are physically separated from one another and indicated that complex rearrangements have shaped this region. Analysis of low-copy genomic sequences detected no genes, including RGC2, in the Dm3 region, other than sequences related to retrotransposons and transposable elements. The related but divergent family of RGC2 genes may act as a resource for the generation of new resistance phenotypes through infrequent recombination or unequal crossing over.

Full Text

The Full Text of this article is available as a PDF (369.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aarts M. G., te Lintel Hekkert B., Holub E. B., Beynon J. L., Stiekema W. J., Pereira A. Identification of R-gene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana. Mol Plant Microbe Interact. 1998 Apr;11(4):251–258. doi: 10.1094/MPMI.1998.11.4.251. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anderson P. A., Lawrence G. J., Morrish B. C., Ayliffe M. A., Finnegan E. J., Ellis J. G. Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region. Plant Cell. 1997 Apr;9(4):641–651. doi: 10.1105/tpc.9.4.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Anderson P. A., Okubara P. A., Arroyo-Garcia R., Meyers B. C., Michelmore R. W. Molecular analysis of irradiation-induced and spontaneous deletion mutants at a disease resistance locus in Lactuca sativa. Mol Gen Genet. 1996 Jun 12;251(3):316–325. doi: 10.1007/BF02172522. [DOI] [PubMed] [Google Scholar]
  5. Baker B., Zambryski P., Staskawicz B., Dinesh-Kumar S. P. Signaling in plant-microbe interactions. Science. 1997 May 2;276(5313):726–733. doi: 10.1126/science.276.5313.726. [DOI] [PubMed] [Google Scholar]
  6. Bevan M., Bancroft I., Bent E., Love K., Goodman H., Dean C., Bergkamp R., Dirkse W., Van Staveren M., Stiekema W. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature. 1998 Jan 29;391(6666):485–488. doi: 10.1038/35140. [DOI] [PubMed] [Google Scholar]
  7. Botella M. A., Coleman M. J., Hughes D. E., Nishimura M. T., Jones J. D., Somerville S. C. Map positions of 47 Arabidopsis sequences with sequence similarity to disease resistance genes. Plant J. 1997 Nov;12(5):1197–1211. doi: 10.1046/j.1365-313x.1997.12051197.x. [DOI] [PubMed] [Google Scholar]
  8. Crute I. R., Pink DAC. Genetics and Utilization of Pathogen Resistance in Plants. Plant Cell. 1996 Oct;8(10):1747–1755. doi: 10.1105/tpc.8.10.1747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dixon M. S., Jones D. A., Keddie J. S., Thomas C. M., Harrison K., Jones J. D. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell. 1996 Feb 9;84(3):451–459. doi: 10.1016/s0092-8674(00)81290-8. [DOI] [PubMed] [Google Scholar]
  10. Dover G. Molecular drive: a cohesive mode of species evolution. Nature. 1982 Sep 9;299(5879):111–117. doi: 10.1038/299111a0. [DOI] [PubMed] [Google Scholar]
  11. Ellis J., Lawrence G., Ayliffe M., Anderson P., Collins N., Finnegan J., Frost D., Luck J., Pryor T. Advances in the molecular genetic analysis of the flax-flax rust interaction. Annu Rev Phytopathol. 1997;35:271–291. doi: 10.1146/annurev.phyto.35.1.271. [DOI] [PubMed] [Google Scholar]
  12. Frohman M. A., Dush M. K., Martin G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8998–9002. doi: 10.1073/pnas.85.23.8998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hammond-Kosack Kim E., Jones Jonathan D. G. PLANT DISEASE RESISTANCE GENES. Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48(NaN):575–607. doi: 10.1146/annurev.arplant.48.1.575. [DOI] [PubMed] [Google Scholar]
  14. Hu G., Richter T. E., Hulbert S. H., Pryor T. Disease Lesion Mimicry Caused by Mutations in the Rust Resistance Gene rp1. Plant Cell. 1996 Aug;8(8):1367–1376. doi: 10.1105/tpc.8.8.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hughes A. L., Nei M. Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature. 1988 Sep 8;335(6186):167–170. doi: 10.1038/335167a0. [DOI] [PubMed] [Google Scholar]
  16. Hughes A. L., Yeager M. Molecular evolution of the vertebrate immune system. Bioessays. 1997 Sep;19(9):777–786. doi: 10.1002/bies.950190907. [DOI] [PubMed] [Google Scholar]
  17. Hulbert S. H. Structure and evolution of the rp1 complex conferring rust resistance in maize. Annu Rev Phytopathol. 1997;35:293–310. doi: 10.1146/annurev.phyto.35.1.293. [DOI] [PubMed] [Google Scholar]
  18. Kanazin V., Marek L. F., Shoemaker R. C. Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11746–11750. doi: 10.1073/pnas.93.21.11746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kesseli R. V., Paran I., Michelmore R. W. Analysis of a detailed genetic linkage map of Lactuca sativa (lettuce) constructed from RFLP and RAPD markers. Genetics. 1994 Apr;136(4):1435–1446. doi: 10.1093/genetics/136.4.1435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kunkel B. N. A useful weed put to work: genetic analysis of disease resistance in Arabidopsis thaliana. Trends Genet. 1996 Feb;12(2):63–69. doi: 10.1016/0168-9525(96)81402-8. [DOI] [PubMed] [Google Scholar]
  21. Lagudah E. S., Moullet O., Appels R. Map-based cloning of a gene sequence encoding a nucleotide-binding domain and a leucine-rich region at the Cre3 nematode resistance locus of wheat. Genome. 1997 Oct;40(5):659–665. doi: 10.1139/g97-087. [DOI] [PubMed] [Google Scholar]
  22. Leister D., Ballvora A., Salamini F., Gebhardt C. A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat Genet. 1996 Dec;14(4):421–429. doi: 10.1038/ng1296-421. [DOI] [PubMed] [Google Scholar]
  23. Martin G. B., Brommonschenkel S. H., Chunwongse J., Frary A., Ganal M. W., Spivey R., Wu T., Earle E. D., Tanksley S. D. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science. 1993 Nov 26;262(5138):1432–1436. doi: 10.1126/science.7902614. [DOI] [PubMed] [Google Scholar]
  24. Meyers B. C., Shen K. A., Rohani P., Gaut B. S., Michelmore R. W. Receptor-like genes in the major resistance locus of lettuce are subject to divergent selection. Plant Cell. 1998 Nov;10(11):1833–1846. doi: 10.1105/tpc.10.11.1833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Michelmore R. W., Paran I., Kesseli R. V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9828–9832. doi: 10.1073/pnas.88.21.9828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nei M., Gu X., Sitnikova T. Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7799–7806. doi: 10.1073/pnas.94.15.7799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Okubara P. A., Anderson P. A., Ochoa O. E., Michelmore R. W. Mutants of downy mildew resistance in Lactuca sativa (lettuce). Genetics. 1994 Jul;137(3):867–874. doi: 10.1093/genetics/137.3.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Okubara P. A., Arroyo-Garcia R., Shen K. A., Mazier M., Meyers B. C., Ochoa O. E., Kim S., Yang C. H., Michelmore R. W. A transgenic mutant of Lactuca sativa (lettuce) with a T-DNA tightly linked to loss of downy mildew resistance. Mol Plant Microbe Interact. 1997 Nov;10(8):970–977. doi: 10.1094/MPMI.1997.10.8.970. [DOI] [PubMed] [Google Scholar]
  29. Ori N., Eshed Y., Paran I., Presting G., Aviv D., Tanksley S., Zamir D., Fluhr R. The I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes. Plant Cell. 1997 Apr;9(4):521–532. doi: 10.1105/tpc.9.4.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ota T., Nei M. Divergent evolution and evolution by the birth-and-death process in the immunoglobulin VH gene family. Mol Biol Evol. 1994 May;11(3):469–482. doi: 10.1093/oxfordjournals.molbev.a040127. [DOI] [PubMed] [Google Scholar]
  31. Parker J. E., Coleman M. J., Szabò V., Frost L. N., Schmidt R., van der Biezen E. A., Moores T., Dean C., Daniels M. J., Jones J. D. The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6. Plant Cell. 1997 Jun;9(6):879–894. doi: 10.1105/tpc.9.6.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Parniske M., Hammond-Kosack K. E., Golstein C., Thomas C. M., Jones D. A., Harrison K., Wulff B. B., Jones J. D. Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell. 1997 Dec 12;91(6):821–832. doi: 10.1016/s0092-8674(00)80470-5. [DOI] [PubMed] [Google Scholar]
  33. Richter T. E., Pryor T. J., Bennetzen J. L., Hulbert S. H. New rust resistance specificities associated with recombination in the Rp1 complex in maize. Genetics. 1995 Sep;141(1):373–381. doi: 10.1093/genetics/141.1.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ronald P. C., Albano B., Tabien R., Abenes L., Wu K. S., McCouch S., Tanksley S. D. Genetic and physical analysis of the rice bacterial blight disease resistance locus, Xa21. Mol Gen Genet. 1992 Dec;236(1):113–120. doi: 10.1007/BF00279649. [DOI] [PubMed] [Google Scholar]
  35. Salmeron J. M., Oldroyd G. E., Rommens C. M., Scofield S. R., Kim H. S., Lavelle D. T., Dahlbeck D., Staskawicz B. J. Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell. 1996 Jul 12;86(1):123–133. doi: 10.1016/s0092-8674(00)80083-5. [DOI] [PubMed] [Google Scholar]
  36. SanMiguel P., Tikhonov A., Jin Y. K., Motchoulskaia N., Zakharov D., Melake-Berhan A., Springer P. S., Edwards K. J., Lee M., Avramova Z. Nested retrotransposons in the intergenic regions of the maize genome. Science. 1996 Nov 1;274(5288):765–768. doi: 10.1126/science.274.5288.765. [DOI] [PubMed] [Google Scholar]
  37. Saxena K. M., Hooker A. L. On the structure of a gene for disease resistance in maize. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1300–1305. doi: 10.1073/pnas.61.4.1300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Shen K. A., Meyers B. C., Islam-Faridi M. N., Chin D. B., Stelly D. M., Michelmore R. W. Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce. Mol Plant Microbe Interact. 1998 Aug;11(8):815–823. doi: 10.1094/MPMI.1998.11.8.815. [DOI] [PubMed] [Google Scholar]
  39. Simons G., Groenendijk J., Wijbrandi J., Reijans M., Groenen J., Diergaarde P., Van der Lee T., Bleeker M., Onstenk J., de Both M. Dissection of the fusarium I2 gene cluster in tomato reveals six homologs and one active gene copy. Plant Cell. 1998 Jun;10(6):1055–1068. doi: 10.1105/tpc.10.6.1055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Smith G. P. Unequal crossover and the evolution of multigene families. Cold Spring Harb Symp Quant Biol. 1974;38:507–513. doi: 10.1101/sqb.1974.038.01.055. [DOI] [PubMed] [Google Scholar]
  41. Song W. Y., Pi L. Y., Wang G. L., Gardner J., Holsten T., Ronald P. C. Evolution of the rice Xa21 disease resistance gene family. Plant Cell. 1997 Aug;9(8):1279–1287. doi: 10.1105/tpc.9.8.1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Song W. Y., Wang G. L., Chen L. L., Kim H. S., Pi L. Y., Holsten T., Gardner J., Wang B., Zhai W. X., Zhu L. H. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science. 1995 Dec 15;270(5243):1804–1806. doi: 10.1126/science.270.5243.1804. [DOI] [PubMed] [Google Scholar]
  43. Sudupak M. A., Bennetzen J. L., Hulbert S. H. Unequal exchange and meiotic instability of disease-resistance genes in the Rp1 region of maize. Genetics. 1993 Jan;133(1):119–125. doi: 10.1093/genetics/133.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Trowsdale J. Genomic structure and function in the MHC. Trends Genet. 1993 Apr;9(4):117–122. doi: 10.1016/0168-9525(93)90205-v. [DOI] [PubMed] [Google Scholar]
  45. Vos P., Hogers R., Bleeker M., Reijans M., van de Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995 Nov 11;23(21):4407–4414. doi: 10.1093/nar/23.21.4407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Walker E. L., Robbins T. P., Bureau T. E., Kermicle J., Dellaporta S. L. Transposon-mediated chromosomal rearrangements and gene duplications in the formation of the maize R-r complex. EMBO J. 1995 May 15;14(10):2350–2363. doi: 10.1002/j.1460-2075.1995.tb07230.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wang G. L., Ruan D. L., Song W. Y., Sideris S., Chen L., Pi L. Y., Zhang S., Zhang Z., Fauquet C., Gaut B. S. Xa21D encodes a receptor-like molecule with a leucine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution. Plant Cell. 1998 May;10(5):765–779. doi: 10.1105/tpc.10.5.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wessler S. R., Bureau T. E., White S. E. LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev. 1995 Dec;5(6):814–821. doi: 10.1016/0959-437x(95)80016-x. [DOI] [PubMed] [Google Scholar]
  49. Whitham S., Dinesh-Kumar S. P., Choi D., Hehl R., Corr C., Baker B. The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell. 1994 Sep 23;78(6):1101–1115. doi: 10.1016/0092-8674(94)90283-6. [DOI] [PubMed] [Google Scholar]
  50. Williams J. G., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990 Nov 25;18(22):6531–6535. doi: 10.1093/nar/18.22.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Yu Y. G., Buss G. R., Maroof M. A. Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11751–11756. doi: 10.1073/pnas.93.21.11751. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES