Abstract
UV and blue light are important regulators of plant gene expression and development. We investigated the signal transduction processes involved in the induction of chalcone synthase (CHS) and phenylalanine ammonia-lyase (PAL) gene expression by UV-B and UV-A/blue light in an Arabidopsis cell suspension culture. Experiments with electron transport inhibitors indicated that plasma membrane redox activity is involved in both signal transduction pathways. Calcium ionophore treatment stimulated expression of the TOUCH3 gene, and this induction was strongly antagonized by UV-A/blue and UV-B light, suggesting that both light qualities may promote calcium efflux from the cytosol. Consistent with this hypothesis, experiments with specific inhibitors indicated that UV-B and UV-A/blue light regulate calcium levels in a cytosolic pool in part via the action of specific Ca2+-ATPases. On the basis of these and previous findings, we propose that plasma membrane redox activity, initiated by photoreception, is coupled to the regulation of calcium release from an intracellular store, generating a calcium signal that is required to induce CHS expression.
Full Text
The Full Text of this article is available as a PDF (357.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahmad M., Cashmore A. R. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature. 1993 Nov 11;366(6451):162–166. doi: 10.1038/366162a0. [DOI] [PubMed] [Google Scholar]
- Ahmad M., Jarillo J. A., Smirnova O., Cashmore A. R. Cryptochrome blue-light photoreceptors of Arabidopsis implicated in phototropism. Nature. 1998 Apr 16;392(6677):720–723. doi: 10.1038/33701. [DOI] [PubMed] [Google Scholar]
- Ahmad M., Jarillo J. A., Smirnova O., Cashmore A. R. Cryptochrome blue-light photoreceptors of Arabidopsis implicated in phototropism. Nature. 1998 Apr 16;392(6677):720–723. doi: 10.1038/33701. [DOI] [PubMed] [Google Scholar]
- Ahmad M., Lin C., Cashmore A. R. Mutations throughout an Arabidopsis blue-light photoreceptor impair blue-light-responsive anthocyanin accumulation and inhibition of hypocotyl elongation. Plant J. 1995 Nov;8(5):653–658. doi: 10.1046/j.1365-313x.1995.08050653.x. [DOI] [PubMed] [Google Scholar]
- Allen G. J., Muir S. R., Sanders D. Release of Ca2+ from individual plant vacuoles by both InsP3 and cyclic ADP-ribose. Science. 1995 May 5;268(5211):735–737. doi: 10.1126/science.7732384. [DOI] [PubMed] [Google Scholar]
- Berger F., Brownlee C. Photopolarization of the Fucus sp. Zygote by Blue Light Involves a Plasma Membrane Redox Chain. Plant Physiol. 1994 Jun;105(2):519–527. doi: 10.1104/pp.105.2.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Braam J., Davis R. W. Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell. 1990 Feb 9;60(3):357–364. doi: 10.1016/0092-8674(90)90587-5. [DOI] [PubMed] [Google Scholar]
- Braam J. Regulated expression of the calmodulin-related TCH genes in cultured Arabidopsis cells: induction by calcium and heat shock. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3213–3216. doi: 10.1073/pnas.89.8.3213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Braam J., Sistrunk M. L., Polisensky D. H., Xu W., Purugganan M. M., Antosiewicz D. M., Campbell P., Johnson K. A. Plant responses to environmental stress: regulation and functions of the Arabidopsis TCH genes. Planta. 1997;203 (Suppl):S35–S41. doi: 10.1007/pl00008113. [DOI] [PubMed] [Google Scholar]
- Briggs W. R., Liscum E. The role of mutants in the search for the photoreceptor for phototropism in higher plants. Plant Cell Environ. 1997;20(6):768–772. doi: 10.1046/j.1365-3040.1997.d01-116.x. [DOI] [PubMed] [Google Scholar]
- Chen X., Chang M., Wang B., Wu B. Cloning of a Ca(2+)-ATPase gene and the role of cytosolic Ca2+ in the gibberellin-dependent signaling pathway in aleurone cells. Plant J. 1997 Mar;11(3):363–371. doi: 10.1046/j.1365-313x.1997.11030363.x. [DOI] [PubMed] [Google Scholar]
- Christie J. M., Jenkins G. I. Distinct UV-B and UV-A/blue light signal transduction pathways induce chalcone synthase gene expression in Arabidopsis cells. Plant Cell. 1996 Sep;8(9):1555–1567. doi: 10.1105/tpc.8.9.1555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dharmawardhane S., Rubinstein B., Stern A. I. Regulation of transplasmalemma electron transport in oat mesophyll cells by sphingoid bases and blue light. Plant Physiol. 1989 Apr;89(4):1345–1350. doi: 10.1104/pp.89.4.1345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuglevand G., Jackson J. A., Jenkins G. I. UV-B, UV-A, and blue light signal transduction pathways interact synergistically to regulate chalcone synthase gene expression in Arabidopsis. Plant Cell. 1996 Dec;8(12):2347–2357. doi: 10.1105/tpc.8.12.2347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gautier H., Vavasseur A., Lascève G., Boudet A. M. Redox Processes in the Blue Light Response of Guard Cell Protoplasts of Commelina communis L. Plant Physiol. 1992 Jan;98(1):34–38. doi: 10.1104/pp.98.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green R., Fluhr R. UV-B-Induced PR-1 Accumulation Is Mediated by Active Oxygen Species. Plant Cell. 1995 Feb;7(2):203–212. doi: 10.1105/tpc.7.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guo H., Yang H., Mockler T. C., Lin C. Regulation of flowering time by Arabidopsis photoreceptors. Science. 1998 Feb 27;279(5355):1360–1363. doi: 10.1126/science.279.5355.1360. [DOI] [PubMed] [Google Scholar]
- Hartmann U., Valentine W. J., Christie J. M., Hays J., Jenkins G. I., Weisshaar B. Identification of UV/blue light-response elements in the Arabidopsis thaliana chalcone synthase promoter using a homologous protoplast transient expression system. Plant Mol Biol. 1998 Mar;36(5):741–754. doi: 10.1023/a:1005921914384. [DOI] [PubMed] [Google Scholar]
- Huala E., Oeller P. W., Liscum E., Han I. S., Larsen E., Briggs W. R. Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science. 1997 Dec 19;278(5346):2120–2123. doi: 10.1126/science.278.5346.2120. [DOI] [PubMed] [Google Scholar]
- Jabs T., Tschope M., Colling C., Hahlbrock K., Scheel D. Elicitor-stimulated ion fluxes and O2- from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4800–4805. doi: 10.1073/pnas.94.9.4800. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jackson J. A., Fuglevand G., Brown B. A., Shaw M. J., Jenkins G. I. Isolation of Arabidopsis mutants altered in the light-regulation of chalcone synthase gene expression using a transgenic screening approach. Plant J. 1995 Sep;8(3):369–380. doi: 10.1046/j.1365-313x.1995.08030369.x. [DOI] [PubMed] [Google Scholar]
- Jackson J. A., Jenkins G. I. Extension-growth responses and expression of flavonoid biosynthesis genes in the Arabidopsis hy4 mutant. Planta. 1995;197(2):233–239. doi: 10.1007/BF00202642. [DOI] [PubMed] [Google Scholar]
- Jenkins G. I. UV and blue light signal transduction in Arabidopsis. Plant Cell Environ. 1997 Jun;20(6):773–778. doi: 10.1046/j.1365-3040.1997.d01-105.x. [DOI] [PubMed] [Google Scholar]
- Kaiser T., Emmler K., Kretsch T., Weisshaar B., Schäfer E., Batschauer A. Promoter elements of the mustard CHS1 gene are sufficient for light regulation in transgenic plants. Plant Mol Biol. 1995 May;28(2):219–229. doi: 10.1007/BF00020242. [DOI] [PubMed] [Google Scholar]
- Kubasek W. L., Shirley B. W., McKillop A., Goodman H. M., Briggs W., Ausubel F. M. Regulation of Flavonoid Biosynthetic Genes in Germinating Arabidopsis Seedlings. Plant Cell. 1992 Oct;4(10):1229–1236. doi: 10.1105/tpc.4.10.1229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lamb Chris, Dixon Richard A. THE OXIDATIVE BURST IN PLANT DISEASE RESISTANCE. Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48(NaN):251–275. doi: 10.1146/annurev.arplant.48.1.251. [DOI] [PubMed] [Google Scholar]
- Levine A., Tenhaken R., Dixon R., Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell. 1994 Nov 18;79(4):583–593. doi: 10.1016/0092-8674(94)90544-4. [DOI] [PubMed] [Google Scholar]
- Lewis B. D., Karlin-Neumann G., Davis R. W., Spalding E. P. Ca(2+)-activated anion channels and membrane depolarizations induced by blue light and cold in Arabidopsis seedlings. Plant Physiol. 1997 Aug;114(4):1327–1334. doi: 10.1104/pp.114.4.1327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin C., Ahmad M., Cashmore A. R. Arabidopsis cryptochrome 1 is a soluble protein mediating blue light-dependent regulation of plant growth and development. Plant J. 1996 Nov;10(5):893–902. doi: 10.1046/j.1365-313x.1996.10050893.x. [DOI] [PubMed] [Google Scholar]
- Lin C., Robertson D. E., Ahmad M., Raibekas A. A., Jorns M. S., Dutton P. L., Cashmore A. R. Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1. Science. 1995 Aug 18;269(5226):968–970. doi: 10.1126/science.7638620. [DOI] [PubMed] [Google Scholar]
- Lin C., Yang H., Guo H., Mockler T., Chen J., Cashmore A. R. Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2686–2690. doi: 10.1073/pnas.95.5.2686. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malhotra K., Kim S. T., Batschauer A., Dawut L., Sancar A. Putative blue-light photoreceptors from Arabidopsis thaliana and Sinapis alba with a high degree of sequence homology to DNA photolyase contain the two photolyase cofactors but lack DNA repair activity. Biochemistry. 1995 May 23;34(20):6892–6899. doi: 10.1021/bi00020a037. [DOI] [PubMed] [Google Scholar]
- May M. J., Leaver C. J. Oxidative Stimulation of Glutathione Synthesis in Arabidopsis thaliana Suspension Cultures. Plant Physiol. 1993 Oct;103(2):621–627. doi: 10.1104/pp.103.2.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Medina M. A., del Castillo-Olivares A., Núez de Castro I. Multifunctional plasma membrane redox systems. Bioessays. 1997 Nov;19(11):977–984. doi: 10.1002/bies.950191107. [DOI] [PubMed] [Google Scholar]
- Noh B., Spalding E. P. Anion channels and the stimulation of anthocyanin accumulation by blue light in Arabidopsis seedlings. Plant Physiol. 1998 Feb;116(2):503–509. doi: 10.1104/pp.116.2.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Donnell B. V., Tew D. G., Jones O. T., England P. J. Studies on the inhibitory mechanism of iodonium compounds with special reference to neutrophil NADPH oxidase. Biochem J. 1993 Feb 15;290(Pt 1):41–49. doi: 10.1042/bj2900041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rao M. V., Paliyath G., Ormrod D. P. Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol. 1996 Jan;110(1):125–136. doi: 10.1104/pp.110.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sancar A. Structure and function of DNA photolyase. Biochemistry. 1994 Jan 11;33(1):2–9. doi: 10.1021/bi00167a001. [DOI] [PubMed] [Google Scholar]
- Trewavas A. J., Malho R. Signal Perception and Transduction: The Origin of the Phenotype. Plant Cell. 1997 Jul;9(7):1181–1195. doi: 10.1105/tpc.9.7.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trost P., Foscarini S., Preger V., Bonora P., Vitale L., Pupillo P. Dissecting the Diphenylene Iodonium-Sensitive NAD(P)H:Quinone Oxidoreductase of Zucchini Plasma Membrane. Plant Physiol. 1997 Jun;114(2):737–746. doi: 10.1104/pp.114.2.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams L. E., Schueler S. B., Briskin D. P. Further Characterization of the Red Beet Plasma Membrane Ca-ATPase Using GTP as an Alternative Substrate. Plant Physiol. 1990 Mar;92(3):747–754. doi: 10.1104/pp.92.3.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
